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Matix Algorithms: Introduction

« Due to their regular structure, parallel computations
Involving matrices and vectors readily lend themselves to
data-decomposition.

* Most algorithms use one- and two-dimensional block,
cyclic, and block-cyclic partitionings.



Matrix-Vector Multiplication

We aim to multiply a dense n x n matrix Awithan nx1
vector X to yield the n x 1 result vectory.

The serial algorithm requires n? multiplications and
additions.

W = n?



Matrix-Vector Multiplication:
Rowwise 1-D Partitioning

The n x n matrix is partitioned among p processors, with
each processor storing n/p complete rows of the matrix.

The n x 1 vector x is distributed such that each process
owns n/p of its elements.



Matrix-Vector Multiplication:
Rowwise 1-D Partitioning
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Multiplication of an n x n matrix with an n x 1 vector using
rowwise block 1-D partitioning. For the one-row-per-process
case, p =n.



Matrix-Vector Multiplication:
Rowwise 1-D Partitioning

Consider the case when p < n and we use block 1D
partitioning.

Each process initially stores n/p complete rows of the
matrix and a portion of the vector of size n/p.

The all-to-all broadcast takes place among p processes
and involves messages of size n/p.

This is followed by n/p local dot products.

Thus, the parallel run time of this procedure on a
hypercube or fat tree is
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Matrix-Vector Multiplication:
2-D Partitioning

« The nx n matrix is partitioned among p processors such
that each processor owns n?/p elements.

« The nx 1 vector x is distributed only in the last column of
pProcessors.



Matrix-Vector Multiplication: 2-D Partitioning
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(c) All-to-one reduction of partial results

Matrix-vector multiplication with block 2-D partitioning. For the
one-element-per-process case, p = n? if the matrix sizeisnxn .
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(d) Final distribution of the result vector



Matrix-Vector Multiplication:
2-D Partitioning

We must first align the vector with the matrix
appropriately.
The first communication step for the 2-D partitioning

aligns the vector x along the principal diagonal of the
matrix.

The second step copies the vector elements from each
diagonal process to all the processes in the
corresponding column using n simultaneous broadcasts
among all processors in the column.

Finally, the result vector is computed by performing an
all-to-one reduction along the columns.



Matrix-Vector Multiplication:
2-D Partitioning

When using fewer than n? processors, each process
owns an (n/,/p) x (n/,/p) block of the matrix.

The vector is distributed in portions of n/\/» elements in
the last process-column only.

In this case, the message sizes for the alignment,
broadcast, and reduction are all n/,/p .

The computation is a product of an (n/,/p) x (n/,/p)
submatrix with a vector of lengthn/, /5 .



Matrix-Vector Multiplication:
2-D Partitioning

The first alignment step takes time

te +twn/\/D

The broadcast and reductions take time

(ts + twn//p)log(\/P)

Local matrix-vector products take time

tcnz/P
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Matrix-Matrix Multiplication

Consider the problem of multiplying two n x n dense,
sqguare matrices A and B to yield the product matrix C =A
X B.

The serial complexity is O(n3).
We do not consider better serial algorithms (Strassen's

method), although, these can be used as serial kernels
In the parallel algorithms.

A useful concept in this case is called block operations.
In this view, an n x n matrix A can be regarded asa g x ¢
array of blocks A;; (0 <1, j <) such that each block is an
(n/g) x (n/g) submatrix.

In this view, we perform g matrix multiplications, each
iInvolving (n/g) x (n/q) matrices.



Matrix-Matrix Multiplication

Consider two N X N matrices A and B partitioned into p
blocks A;; and B;; (0 < i, j <) of size (n/y/p) x (n/\/P)
each.

Process P;;initially stores A;; and B;; and computes block
C,; of the result matrix.

Computing submatrix C;; requires all submatrices A;
and B ; for 0 <k </p.

All-to-all broadcast blocks of A along rows and B along
columns.

Perform local submatrix multiplication.



Matrix-Matrix Multiplication

The two broadcasts take time
2(ts log(y/pP) + tw(n®/p)(/P — 1))

The computation requires ,/» multiplications of
(n/\/P) X (n/\/P) sized submatrices.

The parallel run time is approximately
?’LS TL2
p
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Major drawback of the algorithm is that it is not memory
optimal.



Matrix-Matrix Multiplication:
Cannon's Algorithm

* In this algorithm, we schedule the computations of the
/P processes of the ith row such that, at any given time,
each process is using a different block A; .

« These blocks can be systematically rotated among the
processes after every submatrix multiplication so that
every process gets a fresh A, after each rotation.



Matrix-Matrix Multiplication:
Cannon's Algorithm
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Communication steps in Cannon's algorithm on 16 processes.



Matrix-Matrix Multiplication:
Cannon's Algorithm

Align the blocks of A and B in such a way that each
process multiplies its local submatrices. This is done by
shifting all submatrices A;; to the left (with wraparound)
by I steps and all submatrices B, ; up (with wraparound)
by | steps.

Perform local block multiplication.

Each block of A moves one step left and each block of B
moves one step up (again with wraparound).

Perform next block multiplication, add to partial result,
repeat until all v? blocks have been multiplied.



