Parallel Matrix Operations using MPI

CS 5334/4390 Spring 2015 Shirley Moore, Instructor April 15, 2015

Matix Algorithms: Introduction

- Due to their regular structure, parallel computations involving matrices and vectors readily lend themselves to data-decomposition.
- Most algorithms use one- and two-dimensional block, cyclic, and block-cyclic partitionings.

Matrix-Vector Multiplication

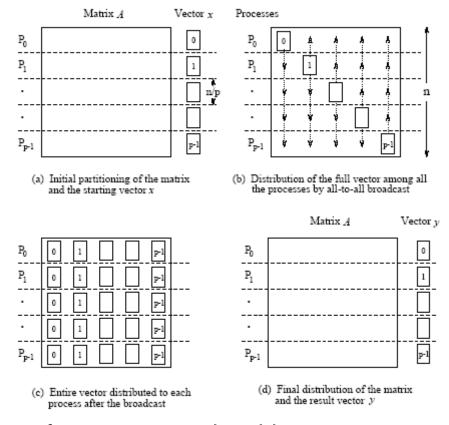
- We aim to multiply a dense *n* x *n* matrix A with an *n* x 1 vector *x* to yield the *n* x 1 result vector y.
- The serial algorithm requires *n*² multiplications and additions.

$$W = n^2$$
.

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

- The *n* x *n* matrix is partitioned among *p* processors, with each processor storing *n*/*p* complete rows of the matrix.
- The *n* x 1 vector *x* is distributed such that each process owns *n*/*p* of its elements.

Matrix-Vector Multiplication: Rowwise 1-D Partitioning



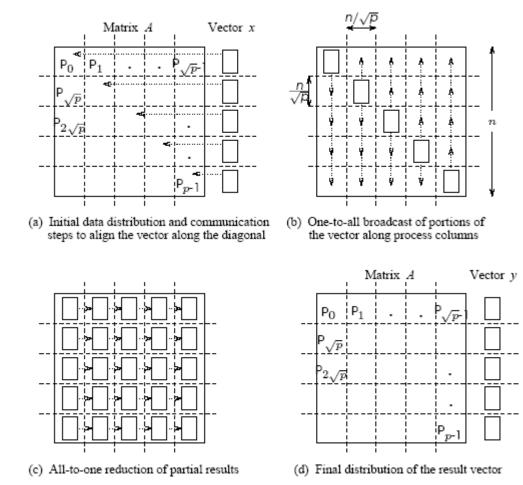
Multiplication of an $n \ge n$ matrix with an $n \ge 1$ vector using rowwise block 1-D partitioning. For the one-row-per-process case, p = n.

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

- Consider the case when *p* < *n* and we use block 1D partitioning.
- Each process initially stores *n*/*p* complete rows of the matrix and a portion of the vector of size *n*/*p*.
- The all-to-all broadcast takes place among *p* processes and involves messages of size *n/p*.
- This is followed by n/p local dot products.
- Thus, the parallel run time of this procedure on a hypercube or fat tree is

$$T_{p} = \frac{n^{2}}{p} + t_{s} \log p + t_{w} \frac{n}{p} (p-1) \approx \frac{n^{2}}{p} + t_{s} \log p + t_{w} n$$

- The *n* x *n* matrix is partitioned among *p* processors such that each processor owns n^2/p elements.
- The *n* x 1 vector *x* is distributed only in the last column of processors.



Matrix-vector multiplication with block 2-D partitioning. For the one-element-per-process case, $p = n^2$ if the matrix size is $n \ge n$.

- We must first align the vector with the matrix appropriately.
- The first communication step for the 2-D partitioning aligns the vector *x* along the principal diagonal of the matrix.
- The second step copies the vector elements from each diagonal process to all the processes in the corresponding column using *n* simultaneous broadcasts among all processors in the column.
- Finally, the result vector is computed by performing an all-to-one reduction along the columns.

- When using fewer than n^2 processors, each process owns an $(n/\sqrt{p}) \times (n/\sqrt{p})$ block of the matrix.
- The vector is distributed in portions of n/\sqrt{p} elements in the last process-column only.
- In this case, the message sizes for the alignment, broadcast, and reduction are all n/\sqrt{p} .
- The computation is a product of an $(n/\sqrt{p}) \times (n/\sqrt{p})$ submatrix with a vector of length n/\sqrt{p} .

• The first alignment step takes time

 $t_s + t_w n / \sqrt{p}$

The broadcast and reductions take time

 $(t_s + t_w n / \sqrt{p}) \log(\sqrt{p})$

• Local matrix-vector products take time

$$t_c n^2/p$$

Total time is

$$T_P ~pprox ~~ rac{n^2}{p} + t_s \log p + t_w rac{n}{\sqrt{p}} \log p$$

Matrix-Matrix Multiplication

- Consider the problem of multiplying two n x n dense, square matrices A and B to yield the product matrix C =A x B.
- The serial complexity is $O(n^3)$.
- We do not consider better serial algorithms (Strassen's method), although, these can be used as serial kernels in the parallel algorithms.
- A useful concept in this case is called *block* operations. In this view, an *n* x *n* matrix *A* can be regarded as a *q* x *q* array of blocks A_{*i*,*j*} (0 ≤ *i*, *j* < *q*) such that each block is an (*n*/*q*) x (*n*/*q*) submatrix.
- In this view, we perform q³ matrix multiplications, each involving (n/q) x (n/q) matrices.

Matrix-Matrix Multiplication

- Consider two $n \ge n$ matrices A and B partitioned into p blocks $A_{i,j}$ and $B_{i,j}$ ($0 \le i, j < \sqrt{p}$) of size $(n/\sqrt{p}) \times (n/\sqrt{p})$ each.
- Process $P_{i,j}$ initially stores $A_{i,j}$ and $B_{i,j}$ and computes block $C_{i,j}$ of the result matrix.
- Computing submatrix $C_{i,j}$ requires all submatrices $A_{i,k}$ and $B_{k,j}$ for $0 \le k < \sqrt{p}$.
- All-to-all broadcast blocks of *A* along rows and *B* along columns.
- Perform local submatrix multiplication.

Matrix-Matrix Multiplication

• The two broadcasts take time

 $2(t_s \log(\sqrt{p}) + t_w(n^2/p)(\sqrt{p} - 1))$

- The computation requires \sqrt{p} multiplications of $(n/\sqrt{p}) \times (n/\sqrt{p})$ sized submatrices.
- The parallel run time is approximately

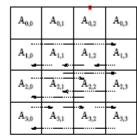
$$T_P = rac{n^3}{p} + t_s \log p + 2t_w rac{n^2}{\sqrt{p}}.$$

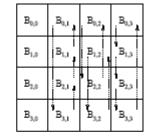
Major drawback of the algorithm is that it is not memory optimal.

Matrix-Matrix Multiplication: Cannon's Algorithm

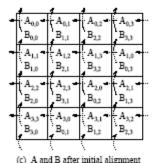
- In this algorithm, we schedule the computations of the \sqrt{p} processes of the *i*th row such that, at any given time, each process is using a different block $A_{i,k}$.
- These blocks can be systematically rotated among the processes after every submatrix multiplication so that every process gets a fresh $A_{i,k}$ after each rotation.

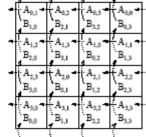
Matrix-Matrix Multiplication: Cannon's Algorithm

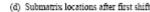


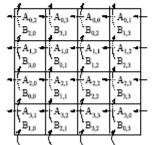


(a) Initial alignment of A









A _{0,3} B _{3,0}	$\substack{A_{0,0} \\ B_{0,1}}$	A _{0,1} B _{1,2}	$\substack{A_{0,2} \\ B_{2,3}}$
A _{1,0}	A _{1,1}	A _{1,2}	A _{1,3}
B _{0,0}	B _{1,1}	B _{2,2}	B _{3,3}
A _{2,1}	A _{2,2}	A _{2,3}	A _{2,0}
B _{1,0}	B _{2,1}	B _{3,2}	B _{0,3}
A _{3,2}	A _{3,3}	A _{3,0}	A _{3,1}
B _{2,0}	B _{3,1}	B _{0,2}	B _{1,3}

(e) Submatrix locations after second shift (f) Submatrix locations after third shift

Communication steps in Cannon's algorithm on 16 processes.

Matrix-Matrix Multiplication: Cannon's Algorithm

- Align the blocks of A and B in such a way that each process multiplies its local submatrices. This is done by shifting all submatrices A_{i,j} to the left (with wraparound) by *i* steps and all submatrices B_{i,j} up (with wraparound) by *j* steps.
- Perform local block multiplication.
- Each block of A moves one step left and each block of B moves one step up (again with wraparound).
- Perform next block multiplication, add to partial result, repeat until all \sqrt{p} blocks have been multiplied.