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Matix Algorithms: Introduction 

• Due to their regular structure, parallel computations 

involving matrices and vectors readily lend themselves to 

data-decomposition. 

• Most algorithms use one- and two-dimensional block, 

cyclic, and block-cyclic partitionings. 



Matrix-Vector Multiplication

• We aim to multiply a dense n x n matrix A with an n x 1 

vector x to yield the n x 1 result vector y.

• The serial algorithm requires n2 multiplications and 

additions.



Matrix-Vector Multiplication: 

Rowwise 1-D Partitioning

• The n x n matrix is partitioned among p processors, with 

each processor storing n/p complete rows of the matrix. 

• The n x 1 vector x is distributed such that each process 

owns n/p of its elements. 



Matrix-Vector Multiplication: 

Rowwise 1-D Partitioning

Multiplication of an n x n matrix with an n x 1 vector using

rowwise block 1-D partitioning. For the one-row-per-process

case, p = n.



Matrix-Vector Multiplication:

Rowwise 1-D Partitioning

• Consider the case when p < n and we use block 1D 
partitioning.

• Each process initially stores n/p complete rows of the 
matrix and a portion of the vector of size n/p.

• The all-to-all broadcast takes place among p processes 
and involves messages of size n/p.

• This is followed by n/p local dot products.

• Thus, the parallel run time of this procedure on a 
hypercube or fat tree is
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Matrix-Vector Multiplication: 

2-D Partitioning

• The n x n matrix is partitioned among p processors such 

that each processor owns n2/p elements.

• The n x 1 vector x is distributed only in the last column of  

processors.



Matrix-Vector Multiplication: 2-D Partitioning

Matrix-vector multiplication with block 2-D partitioning. For the

one-element-per-process case, p = n2 if the matrix size is n x n .



Matrix-Vector Multiplication: 

2-D Partitioning

• We must first align the vector with the matrix 

appropriately. 

• The first communication step for the 2-D partitioning 

aligns the vector x along the principal diagonal of the 

matrix. 

• The second step copies the vector elements from each 

diagonal process to all the processes in the 

corresponding column using n simultaneous broadcasts 

among all processors in the column. 

• Finally, the result vector is computed by performing an 

all-to-one reduction along the columns. 



Matrix-Vector Multiplication: 

2-D Partitioning

• When using fewer than  n2 processors, each process 

owns an                           block of the matrix. 

• The vector is distributed in portions of            elements in 

the last process-column only. 

• In this case, the message sizes for the alignment, 

broadcast, and reduction are all           . 

• The computation is a product of an                     

submatrix with a vector of length         . 



Matrix-Vector Multiplication: 

2-D Partitioning

• The first alignment step takes time    

• The broadcast and reductions take time  

• Local matrix-vector products take time   

• Total time is 



Matrix-Matrix Multiplication 

• Consider the problem of multiplying two n x n dense, 

square matrices A and B to yield the product matrix C =A 

x B.

• The serial complexity is O(n3).

• We do not consider better serial algorithms (Strassen's 

method), although, these can be used as serial kernels 

in the parallel algorithms.

• A useful concept in this case is called block operations. 

In this view, an n x n matrix A can be regarded as a q x q

array of blocks Ai,j (0 ≤ i, j < q) such that each block is an 

(n/q) x (n/q) submatrix.

• In this view, we perform q3 matrix multiplications, each 

involving (n/q) x (n/q) matrices.



Matrix-Matrix Multiplication

• Consider two n x n matrices A and B partitioned into p

blocks Ai,j and Bi,j (0 ≤ i, j < ) of size                      

each.

• Process Pi,j initially stores Ai,j and Bi,j and computes block 

Ci,j of the result matrix.

• Computing submatrix Ci,j requires all submatrices Ai,k

and Bk,j for 0 ≤ k <     .

• All-to-all broadcast blocks of A along rows and B along 

columns.

• Perform local submatrix multiplication.



Matrix-Matrix Multiplication

• The two broadcasts take time

• The computation requires       multiplications of             
sized submatrices. 

• The parallel run time is approximately 

• Major drawback of the algorithm is that it is not memory 
optimal. 



Matrix-Matrix Multiplication: 

Cannon's Algorithm

• In this algorithm, we schedule the computations of the     

processes of the ith row such that, at any given time, 

each process is using a different block Ai,k.

• These blocks can be systematically rotated among the 

processes after every submatrix multiplication so that 

every process gets a fresh Ai,k after each rotation.



Matrix-Matrix Multiplication: 

Cannon's Algorithm

Communication steps in Cannon's algorithm on 16 processes.



Matrix-Matrix Multiplication: 

Cannon's Algorithm

• Align the blocks of A and B in such a way that each 

process multiplies its local submatrices. This is done by 

shifting all submatrices Ai,j to the left (with wraparound) 

by i steps and all submatrices Bi,j up (with wraparound) 

by j steps.

• Perform local block multiplication.

• Each block of A moves one step left and each block of B

moves one step up (again with wraparound).

• Perform next block multiplication, add to partial result, 

repeat until all      blocks have been multiplied.


