Parallel Matrix Operations using MP|

CS 5334/4390 Spring 2015
Shirley Moore, Instructor
April 15, 2015

Matix Algorithms: Introduction

« Due to their regular structure, parallel computations
Involving matrices and vectors readily lend themselves to
data-decomposition.

* Most algorithms use one- and two-dimensional block,
cyclic, and block-cyclic partitionings.

Matrix-Vector Multiplication

We aim to multiply a dense n x n matrix Awithan nx1
vector X to yield the n x 1 result vectory.

The serial algorithm requires n? multiplications and
additions.

W = n?

Matrix-Vector Multiplication:
Rowwise 1-D Partitioning

The n x n matrix is partitioned among p processors, with
each processor storing n/p complete rows of the matrix.

The n x 1 vector x is distributed such that each process
owns n/p of its elements.

Matrix-Vector Multiplication:
Rowwise 1-D Partitioning

Matix 4 Vector x Processes

L
i Y | T

__

———

sl]

() Initial partitioning of the matrix (b} Dustrtbution of the full vector ameng all
and the starting vector x the processes by all-to-all broadeast
Matrix 4 Veetor y

o
[=]
[-]
[]
]
[]
o

[Z]

{c) Entire vector distributed to each (d) Fmal distribution of the matrix
process after the broadeast and the result vector ¥

Multiplication of an n x n matrix with an n x 1 vector using
rowwise block 1-D partitioning. For the one-row-per-process
case, p =n.

Matrix-Vector Multiplication:
Rowwise 1-D Partitioning

Consider the case when p < n and we use block 1D
partitioning.

Each process initially stores n/p complete rows of the
matrix and a portion of the vector of size n/p.

The all-to-all broadcast takes place among p processes
and involves messages of size n/p.

This is followed by n/p local dot products.

Thus, the parallel run time of this procedure on a
hypercube or fat tree is

n2 2

N N
T, =—+tlogp+t,—(p-1)~—+t,log p+t,n
b p p

Matrix-Vector Multiplication:
2-D Partitioning

« The nx n matrix is partitioned among p processors such
that each processor owns n?/p elements.

« The nx 1 vector x is distributed only in the last column of
pProcessors.

Matrix-Vector Multiplication: 2-D Partitioning

Matrix A Vector x
| | | |
<] 1 T
P P 1 1 b — D
S S IO ol I S
_J'l__:,l 1 1 1
'_L'i" 'J:"";gli.f i.l;.i_ e
Payd 1 D

(a) Initial data distribution and communication
steps to align the vector along the diagonal

———————————————————————————

———————————————————————————

(c) All-to-one reduction of partial results

Matrix-vector multiplication with block 2-D partitioning. For the
one-element-per-process case, p = n? if the matrix sizeisnxn .

RN T S-S S s e S Y-S

—————————————————————————

all g i
W ___;_I____i

¥

(&) One-to-all broadeast of pottions of

the vector along process columns

—————————————————————————

Matrix A
e
1 1 1 1
1 1 1
Po tPy oL P
1 1 1 1
LI R
1 1 1 1
1 1 1
o 11
1 I I I
1

Vector y

(d) Final distribution of the result vector

Matrix-Vector Multiplication:
2-D Partitioning

We must first align the vector with the matrix
appropriately.
The first communication step for the 2-D partitioning

aligns the vector x along the principal diagonal of the
matrix.

The second step copies the vector elements from each
diagonal process to all the processes in the
corresponding column using n simultaneous broadcasts
among all processors in the column.

Finally, the result vector is computed by performing an
all-to-one reduction along the columns.

Matrix-Vector Multiplication:
2-D Partitioning

When using fewer than n? processors, each process
owns an (n/,/p) x (n/,/p) block of the matrix.

The vector is distributed in portions of n/\/» elements in
the last process-column only.

In this case, the message sizes for the alignment,
broadcast, and reduction are all n/,/p .

The computation is a product of an (n/,/p) x (n/,/p)
submatrix with a vector of lengthn/, /5 .

Matrix-Vector Multiplication:
2-D Partitioning

The first alignment step takes time

te +twn/\/D

The broadcast and reductions take time

(ts + twn//p)log(\/P)

Local matrix-vector products take time

tcnz/P
Total time Is
2

n n
Tp ~ — + tslogp + ty—logp
p

VP

Matrix-Matrix Multiplication

Consider the problem of multiplying two n x n dense,
sqguare matrices A and B to yield the product matrix C =A
X B.

The serial complexity is O(n3).
We do not consider better serial algorithms (Strassen's

method), although, these can be used as serial kernels
In the parallel algorithms.

A useful concept in this case is called block operations.
In this view, an n x n matrix A can be regarded asa g x ¢
array of blocks A;; (0 <1, j <) such that each block is an
(n/g) x (n/g) submatrix.

In this view, we perform g matrix multiplications, each
iInvolving (n/g) x (n/q) matrices.

Matrix-Matrix Multiplication

Consider two N X N matrices A and B partitioned into p
blocks A;; and B;; (0 < i, j <) of size (n/y/p) x (n/\/P)
each.

Process P;;initially stores A;; and B;; and computes block
C,; of the result matrix.

Computing submatrix C;; requires all submatrices A;
and B ; for 0 <k </p.

All-to-all broadcast blocks of A along rows and B along
columns.

Perform local submatrix multiplication.

Matrix-Matrix Multiplication

The two broadcasts take time
2(ts log(y/pP) + tw(n®/p)(/P — 1))

The computation requires ,/» multiplications of
(n/\/P) X (n/\/P) sized submatrices.

The parallel run time is approximately
?’LS TL2
p

VP

Major drawback of the algorithm is that it is not memory
optimal.

Matrix-Matrix Multiplication:
Cannon's Algorithm

* In this algorithm, we schedule the computations of the
/P processes of the ith row such that, at any given time,
each process is using a different block A; .

« These blocks can be systematically rotated among the
processes after every submatrix multiplication so that
every process gets a fresh A, after each rotation.

Matrix-Matrix Multiplication:
Cannon's Algorithm

Agp | A Age | Ags By By) By IB,“ .
| i
A | Au Az | A Bys = Biai | Bis
A | A L Ais | Ag B, Bay g | B =
| |
= = - ;
Agp J'-:.l Ags -'!'-3.1 H:, By, El\.! iB”
(2) Inrnal aliznment of A (b)) Inidal alizpment of B
T PR B
"L.Avl.- EAHI*EA\IZ'-EA‘MJ*" - Ill-'!'-u. ""ii-"‘u,z" il:-'!'-u.l""iil-"*:_u" "
Buu J,B'..l _‘B‘.-: ",HJ.J ‘HI ‘B'.'_I ‘H:.: ‘Bu,-:
"'!__All" i__;"l.'.'-'-!__"b"l.'iq-i‘!"l - - I"!"I ""L;_-"*I,'i" !:"'!"I.:"'i;_"""-.lq "
‘B ‘B, ‘Byy | B ‘B, | B ‘Bys | B
P P P P 4 P P P
-) PR | R S S | T FAT |
o
I £ 1,1 4 1 f 1,3 |‘ 48 ! | 4 13 P 13
""-__'A.'::-"' :-:-‘1'-3,u"' E__'A-l il 8 -'!'-3. - - -'!'-3. - :_;_-"-H,l - E:'-'!'-s.:":_;_-"ﬂ_.':"' "
! "B, ‘Bis B— ‘B ‘B ‘B:s | B
. 1 s 5,1 s L3 . 3 s e s L P P 13
(c) A and B after imidal nljg:lm.mu (d) Submatriz lecations after first shift
gt
= ;-'ﬂ'u: "'E__':"Lm" -_:_-ﬂwu"' i -'!Lu.'. T %u.: -'B’-‘uu_u %u.'. -'B’*:,z
: ‘B By, |'B ¢ ! 3 22
.‘B!I.- ’ 11 d.B-.l ‘ 1.3 H | 1 3
- .E"a"l :_"il:-‘l"-l.u" 'i{'ﬂ*-l 1™ il:"!"l.!-. I~ -'"-l.: -"-ll_l "!"I.! -"*'._.1
‘,E'.n.- e ‘,BI: ‘E:.J By = B, B
[| [|
- E"a“!b‘-i_::\':.l - '_:.-'ﬂ*-'.'z"' 5_.'-'!'-:.1"' I~ A -"-".',2 "!":.J -"*:_u
-BUI.I ‘-B'..I ;E‘.': d.EJ,J B, = Bay By
- ',:As 1 'L Ay, tﬁ‘m* ill‘!l:.: T Ay, Ay | Ase Ay
BI b ‘,B':.l ",BI: 4 By B, = By =

1

{g) Submatrr: locatons afier second shift (f) Submatnx locations after third shift

Communication steps in Cannon's algorithm on 16 processes.

Matrix-Matrix Multiplication:
Cannon's Algorithm

Align the blocks of A and B in such a way that each
process multiplies its local submatrices. This is done by
shifting all submatrices A;; to the left (with wraparound)
by I steps and all submatrices B, ; up (with wraparound)
by | steps.

Perform local block multiplication.

Each block of A moves one step left and each block of B
moves one step up (again with wraparound).

Perform next block multiplication, add to partial result,
repeat until all v? blocks have been multiplied.

