
Parallel Matrix Operations using MPI

CS 5334/4390 Spring 2015

Shirley Moore, Instructor

April 15, 2015

1

Matix Algorithms: Introduction

• Due to their regular structure, parallel computations

involving matrices and vectors readily lend themselves to

data-decomposition.

• Most algorithms use one- and two-dimensional block,

cyclic, and block-cyclic partitionings.

Matrix-Vector Multiplication

• We aim to multiply a dense n x n matrix A with an n x 1

vector x to yield the n x 1 result vector y.

• The serial algorithm requires n2 multiplications and

additions.

Matrix-Vector Multiplication:

Rowwise 1-D Partitioning

• The n x n matrix is partitioned among p processors, with

each processor storing n/p complete rows of the matrix.

• The n x 1 vector x is distributed such that each process

owns n/p of its elements.

Matrix-Vector Multiplication:

Rowwise 1-D Partitioning

Multiplication of an n x n matrix with an n x 1 vector using

rowwise block 1-D partitioning. For the one-row-per-process

case, p = n.

Matrix-Vector Multiplication:

Rowwise 1-D Partitioning

• Consider the case when p < n and we use block 1D
partitioning.

• Each process initially stores n/p complete rows of the
matrix and a portion of the vector of size n/p.

• The all-to-all broadcast takes place among p processes
and involves messages of size n/p.

• This is followed by n/p local dot products.

• Thus, the parallel run time of this procedure on a
hypercube or fat tree is

T

ntpt
p

n
p

p

n
tpt

p

n
T wswsp  log)1(log

22

Matrix-Vector Multiplication:

2-D Partitioning

• The n x n matrix is partitioned among p processors such

that each processor owns n2/p elements.

• The n x 1 vector x is distributed only in the last column of

processors.

Matrix-Vector Multiplication: 2-D Partitioning

Matrix-vector multiplication with block 2-D partitioning. For the

one-element-per-process case, p = n2 if the matrix size is n x n .

Matrix-Vector Multiplication:

2-D Partitioning

• We must first align the vector with the matrix

appropriately.

• The first communication step for the 2-D partitioning

aligns the vector x along the principal diagonal of the

matrix.

• The second step copies the vector elements from each

diagonal process to all the processes in the

corresponding column using n simultaneous broadcasts

among all processors in the column.

• Finally, the result vector is computed by performing an

all-to-one reduction along the columns.

Matrix-Vector Multiplication:

2-D Partitioning

• When using fewer than n2 processors, each process

owns an block of the matrix.

• The vector is distributed in portions of elements in

the last process-column only.

• In this case, the message sizes for the alignment,

broadcast, and reduction are all .

• The computation is a product of an

submatrix with a vector of length .

Matrix-Vector Multiplication:

2-D Partitioning

• The first alignment step takes time

• The broadcast and reductions take time

• Local matrix-vector products take time

• Total time is

Matrix-Matrix Multiplication

• Consider the problem of multiplying two n x n dense,

square matrices A and B to yield the product matrix C =A

x B.

• The serial complexity is O(n3).

• We do not consider better serial algorithms (Strassen's

method), although, these can be used as serial kernels

in the parallel algorithms.

• A useful concept in this case is called block operations.

In this view, an n x n matrix A can be regarded as a q x q

array of blocks Ai,j (0 ≤ i, j < q) such that each block is an

(n/q) x (n/q) submatrix.

• In this view, we perform q3 matrix multiplications, each

involving (n/q) x (n/q) matrices.

Matrix-Matrix Multiplication

• Consider two n x n matrices A and B partitioned into p

blocks Ai,j and Bi,j (0 ≤ i, j <) of size

each.

• Process Pi,j initially stores Ai,j and Bi,j and computes block

Ci,j of the result matrix.

• Computing submatrix Ci,j requires all submatrices Ai,k

and Bk,j for 0 ≤ k < .

• All-to-all broadcast blocks of A along rows and B along

columns.

• Perform local submatrix multiplication.

Matrix-Matrix Multiplication

• The two broadcasts take time

• The computation requires multiplications of
sized submatrices.

• The parallel run time is approximately

• Major drawback of the algorithm is that it is not memory
optimal.

Matrix-Matrix Multiplication:

Cannon's Algorithm

• In this algorithm, we schedule the computations of the

processes of the ith row such that, at any given time,

each process is using a different block Ai,k.

• These blocks can be systematically rotated among the

processes after every submatrix multiplication so that

every process gets a fresh Ai,k after each rotation.

Matrix-Matrix Multiplication:

Cannon's Algorithm

Communication steps in Cannon's algorithm on 16 processes.

Matrix-Matrix Multiplication:

Cannon's Algorithm

• Align the blocks of A and B in such a way that each

process multiplies its local submatrices. This is done by

shifting all submatrices Ai,j to the left (with wraparound)

by i steps and all submatrices Bi,j up (with wraparound)

by j steps.

• Perform local block multiplication.

• Each block of A moves one step left and each block of B

moves one step up (again with wraparound).

• Perform next block multiplication, add to partial result,

repeat until all blocks have been multiplied.

