Parallel Matrix Operations using MPI

CPS 5401 Fall 2014
Shirley Moore, Instructor
November 3, 2014

Matix Algorithms: Introduction

- Due to their regular structure, parallel computations involving matrices and vectors readily lend themselves to data-decomposition.
- Most algorithms use one- and two-dimensional block, cyclic, and block-cyclic partitionings.

Matrix-Vector Multiplication

- We aim to multiply a dense $n \times n$ matrix A with an $n \times 1$ vector x to yield the $n \times 1$ result vector y .
- The serial algorithm requires n^{2} multiplications and additions.

$$
W=n^{2} .
$$

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

- The $n \times n$ matrix is partitioned among p processors, with each processor storing n / p complete rows of the matrix.
- The $n \times 1$ vector x is distributed such that each process owns n / p of its elements.

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

Multiplication of an $n \times n$ matrix with an $n \times 1$ vector using rowwise block 1-D partitioning. For the one-row-per-process
case, $p=n$.

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

- Consider the case when $p<n$ and we use block 1D partitioning.
- Each process initially stores n / p complete rows of the matrix and a portion of the vector of size n / p.
- The all-to-all broadcast takes place among p processes and involves messages of size n / p.
- This is followed by n / p local dot products.
- Thus, the parallel run time of this procedure is

$$
T_{P}=\frac{n^{2}}{p}+t_{s} \log p+t_{w} n
$$

Matrix-Vector Multiplication: 2-D Partitioning

- The $n \times n$ matrix is partitioned among p processors such that each processor owns n^{2} / p elements.
- The $n \times 1$ vector x is distributed only in the last column of processors.

Matrix-Vector Multiplication: 2-D Partitioning

(a) Initial data distribution and communication steps to align the vector along the diagonal

(c) All-to-one reduction of partial results

(b) One-to-all broadcast of portions of the vector along process columns

(d) Final distribution of the result vector

Matrix-vector multiplication with block 2-D partitioning. For the one-element-per-process case, $p=n^{2}$ if the matrix size is $n \times n$.

Matrix-Vector Multiplication: 2-D Partitioning

- We must first align the vector with the matrix appropriately.
- The first communication step for the 2-D partitioning aligns the vector x along the principal diagonal of the matrix.
- The second step copies the vector elements from each diagonal process to all the processes in the corresponding column using n simultaneous broadcasts among all processors in the column.
- Finally, the result vector is computed by performing an all-to-one reduction along the columns.

Matrix-Vector Multiplication: 2-D Partitioning

- When using fewer than n^{2} processors, each process owns an $(n / \sqrt{p}) \times(n / \sqrt{p})$ block of the matrix.
- The vector is distributed in portions of n / \sqrt{p} elements in the last process-column only.
- In this case, the message sizes for the alignment, broadcast, and reduction are all n / \sqrt{p}.
- The computation is a product of an $(n / \sqrt{p}) \times(n / \sqrt{p})$ submatrix with a vector of length ${ }_{n / \sqrt{p}}$.

Matrix-Vector Multiplication: 2-D Partitioning

- The first alignment step takes time

$$
t_{s}+t_{w} n / \sqrt{p}
$$

- The broadcast and reductions take time

$$
\left(t_{s}+t_{w} n / \sqrt{p}\right) \log (\sqrt{p})
$$

- Local matrix-vector products take time

$$
t_{c} n^{2} / p
$$

- Total time is

$$
T_{P} \approx \frac{n^{2}}{p}+t_{s} \log p+t_{w} \frac{n}{\sqrt{p}} \log p
$$

Matrix-Matrix Multiplication

- Consider the problem of multiplying two $n \times n$ dense, square matrices A and B to yield the product matrix $C=A$ $\times B$.
- The serial complexity is $O\left(n^{3}\right)$.
- We do not consider better serial algorithms (Strassen's method), although, these can be used as serial kernels in the parallel algorithms.
- A useful concept in this case is called block operations. In this view, an $n \times n$ matrix A can be regarded as a $q \times q$ array of blocks $A_{i, j}(0 \leq i, j<q)$ such that each block is an $(n / q) \times(n / q)$ submatrix.
- In this view, we perform q^{3} matrix multiplications, each involving $(n / q) \times(n / q)$ matrices.

Matrix-Matrix Multiplication

- Consider two $n \times n$ matrices A and B partitioned into p blocks $A_{i, j}$ and $B_{i, j}(0 \leq i, j<\sqrt{p})$ of size $(n / \sqrt{p}) \times(n / \sqrt{p})$ each.
- Process $P_{i, j}$ initially stores $A_{i, j}$ and $B_{i, j}$ and computes block $C_{i, j}$ of the result matrix.
- Computing submatrix $C_{i, j}$ requires all submatrices $A_{i, k}$ and $B_{k, j}$ for $0 \leq k<\sqrt{p}$.
- All-to-all broadcast blocks of A along rows and B along columns.
- Perform local submatrix multiplication.

Matrix-Matrix Multiplication

- The two broadcasts take time

$$
2\left(t_{s} \log (\sqrt{p})+t_{w}\left(n^{2} / p\right)(\sqrt{p}-1)\right)
$$

- The computation requires \sqrt{p} multiplications of $(n / \sqrt{p}) \times(n / \sqrt{p}) \quad$ sized submatrices.
- The parallel run time is approximately

$$
T_{P}=\frac{n^{3}}{p}+t_{s} \log p+2 t_{w} \frac{n^{2}}{\sqrt{p}} .
$$

- Major drawback of the algorithm is that it is not memory optimal.

Matrix-Matrix Multiplication: Cannon's Algorithm

- In this algorithm, we schedule the computations of the \sqrt{p} processes of the i th row such that, at any given time, each process is using a different block $A_{i, k}$.
- These blocks can be systematically rotated among the processes after every submatrix multiplication so that every process gets a fresh $A_{i, k}$ after each rotation.

Matrix-Matrix Multiplication: Cannon's Algorithm

(a) Initial alignment of A

(c) A and B after initial alignment

(e) Submanix locations after second shift (f) Subunatrix locations after third shift

Matrix-Matrix Multiplication: Cannon's Algorithm

- Align the blocks of A and B in such a way that each process multiplies its local submatrices. This is done by shifting all submatrices $A_{i, j}$ to the left (with wraparound) by i steps and all submatrices $B_{i, j}$ up (with wraparound) by j steps.
- Perform local block multiplication.
- Each block of A moves one step left and each block of B moves one step up (again with wraparound).
- Perform next block multiplication, add to partial result, repeat until all \sqrt{p} blocks have been multiplied.

