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Definition of Parallel Computing

• Simultaneous use of multiple compute 
resources to solve a computational problem
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Definition (2)

• The compute resources might be 
– A single computer with multiple processors and/or cores; 
– An arbitrary number of computers connected by a 

network; 
– A combination of both. 

• The computational problem should be amenable to
– being broken apart into discrete pieces of work that can be 

solved simultaneously; 
– executing multiple program instructions at any moment in 

time; 
– being solved in less time with multiple compute resources 

than with a single compute resource. 
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Why Use Parallel Computing?

• The universe is massively parallel.
• Save time and/or money
• Solve larger problems 

– May not be able to fit data into memory of single 
computer

• Provide concurrency
– Necessary to take advantage of all resources on 

multicore/manycore systems

• Trends indicated by ever faster networks, distributed 
systems, and multi-processor computer architectures 
(even at the desktop level) clearly show that 
parallelism is the future of computing. 
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Parallel Terminology

• Node
– A standalone "computer in a box". Usually comprised of 

multiple CPUs/processors/cores. Nodes are networked 
together to comprise a supercomputer.

• CPU / Socket / Processor / Core 
– This varies, depending upon whom you talk to. In the past, 

a CPU (Central Processing Unit) was a singular execution 
component for a computer. Then, multiple CPUs were 
incorporated into a node. Then, individual CPUs were 
subdivided into multiple "cores", each being a unique 
execution unit. CPUs with multiple cores are sometimes 
called "sockets" - vendor dependent. The result is a node 
with multiple CPUs, each containing multiple cores. The 
nomenclature is confusing at times.
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Terminology (2)

• Task

– A logically discrete section of computational work. A 
task is typically a program or program-like set of 
instructions that is executed by a processor. A parallel 
program consists of multiple tasks running on multiple 
processors. 

• Pipelining

– Breaking a task into steps performed by different 
processor units, with inputs streaming through, much 
like an assembly line; a type of parallel computing. 

6



Terminology (3)

• Shared memory
– From a strictly hardware point of view, describes a computer 

architecture where all processors have direct (usually bus based) 
access to common physical memory. In a programming sense, it 
describes a model where parallel tasks all have the same "picture" of 
memory and can directly address and access the same logical memory 
locations regardless of where the physical memory actually exists. 

• Symmetric Multi-Processor (SMP)
– Hardware architecture where multiple processors share a single 

address space and access to all resources.

• Distributed memory
– In hardware, refers to network based memory access for physical 

memory that is not common. As a programming model, tasks can only 
logically "see" local machine memory and must use communication to 
access memory on other machines where other tasks are executing. 

7



Terminology (4)

• Communication
– Exchange data between parallel tasks. There are several ways this can 

be accomplished, such as through a shared memory or over a 
network.

• Synchronization
– The coordination of parallel tasks in real time, very often associated 

with communication. Often implemented by establishing a 
synchronization point within an application where a task may not 
proceed further until other tasks reaches the same or logically 
equivalent point. 

• Granularity
– A qualitative measure of the ratio of computation to communication.

• Coarse: relatively large amounts of computational work are done between 
communication events 

• Fine: relatively small amounts of computational work are done between 
communication events 
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Speedup and Overhead

• Speedup = Wallclock time of serial execution
Wallcock time of parallel execution

• Parallel overhead
– The amount of time required to coordinate parallel tasks, 

as opposed to doing useful work. Parallel overhead can 
include factors such as: 
• Task start-up time 
• Synchronizations 
• Data communications 
• Software overhead imposed by parallel compilers, libraries, tools, 

operating system, etc. 
• Task termination time 
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Scalability

• Refers to a parallel system's (hardware and/or 
software) ability to demonstrate a proportionate 
increase in parallel speedup with the addition of 
more processors. 

• Factors that contribute to scalability include:
– Hardware 

• Especially memory-CPU and network bandwidths 

– Application algorithm 

– Parallel overhead  

– Characteristics of your specific implementation 
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Types of Scalability

• Strong scaling
– Fixed overall problem size
– Goal is to reduce time to solve the problem
– Ideal is perfect linear speedup (e.g., with twice as many processors, 

the problem is solved in half the time)

• Weak scaling
– Fixed problem size per processor
– Scale up overall problem size with number of processors (e.g., with 

twice as many processors, double the overall problem size)
– Ideal is to solve the larger problem in the same amount of time

• Iso-efficiency scaling
– Increase problem size along with increase in number of processors so 

as to maintain constant efficiency in use of resources
– Often requires increases problem size per processor
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Parallel Programming Models

• There are several parallel programming models in 
common use: 
– Shared Memory 

• Threads 

– Distributed Memory / Message Passing 

– Data Parallel 

– Hybrid 

– Single Program Multiple Data (SPMD) 

– Multiple Program Multiple Data (MPMD) 

• Parallel programming models exist as an abstraction 
above hardware and memory architectures.
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Shared Memory

• Tasks share a common address space, which they read and write to 
asynchronously. 

• Various mechanisms such as locks / semaphores may be used to 
control access to the shared memory. 

• An advantage of this model from the programmer's point of view is 
that the notion of data "ownership" is lacking, so there is no need 
to specify explicitly the communication of data between tasks, 
simplifying program development. 

• A disadvantage in terms of performance is that it becomes more 
difficult to understand and manage data locality. Keeping data local 
to the processor that works on it conserves memory accesses, 
cache refreshes and bus traffic that occurs when multiple 
processors use the same data. 
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Threads

• A type of shared memory programming in 
which each process can have multiple 
execution paths

• From a programming perspective, threads 
implementations commonly comprise

– A library of subroutines that are called from within 
parallel source code – e.g., Pthreads, Java threads

– A set of compiler directives embedded in either 
serial or parallel source code – e.g., OpenMP
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POSIX Threads (aka Pthreads)

• Library based; requires parallel coding 
• Specified by the IEEE POSIX 1003.1c standard 

(1995). 
• C Language only 
• Commonly referred to as Pthreads. 
• Most hardware vendors now offer Pthreads in 

addition to their proprietary threads 
implementations. 

• Very explicit parallelism; requires significant 
programmer attention to detail. 
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OpenMP

• Compiler directive based 
• Jointly defined and endorsed by a group of major 

computer hardware and software vendors
– www.openmp.org

• Portable / multi-platform 
• Available in C/C++ and Fortran implementations 
• Can be very easy and simple to use - provides for 

"incremental parallelism“
• Until OpenMP 4.0, didn’t have support for data 

locality => can perform poorly 
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Distributed Memory/Message Passing 
Model

• A set of tasks that use their own local memory 
during computation. 
– Multiple tasks can reside on the same physical 

machine and/or across an arbitrary number of 
machines. 

• Tasks exchange data through communications by 
sending and receiving messages. 

• Data transfer usually requires cooperative 
operations to be performed by each process. 
– For example, a send operation must have a matching 

receive operation. 
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Message Passing Model Implementation

• From a programming perspective, message passing 
implementations usually comprise a library of subroutines.
– Calls to these subroutines are embedded in source code.
– The programmer is responsible for determining all parallelism. 

• Historically, a variety of message passing libraries have been 
available since the 1980s. These implementations differed 
substantially from each other making it difficult for programmers to 
develop portable applications. 

• In 1992, the MPI Forum was formed with the primary goal of 
establishing a standard interface for message passing 
implementations. 
– www.mpi-forum.org

• MPI is now the "de facto" industry standard for message passing, 
replacing virtually all other message passing implementations used 
for production work. MPI implementations exist for virtually all 
popular parallel computing platforms. Not all implementations 
include everything in the standard.
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Hybrid Model
• A hybrid model combines more than one of the previously 

described programming models. 
• Currently, a common example of a hybrid model is the combination 

of the message passing model (MPI) with the threads model 
(OpenMP). 
– Threads perform computationally intensive kernels using local, on-

node data 
– Communications between processes on different nodes occurs over 

the network using MPI 

• This hybrid model lends itself well to the increasingly common 
hardware environment of clustered multi/many-core machines. 

• Another similar and increasingly popular example of a hybrid model 
is using MPI with GPU (Graphics Processing Unit) programming. 
– GPUs perform computationally intensive kernels using local, on-node 

data 
– Communications between processes on different nodes occurs over 

the network using MPI 
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Automatic vs. Manual Parallelism (or 
something in between)

• Designing and developing parallel programs has characteristically been a very manual process. 
• Manually developing parallel codes is a time consuming, complex, error-prone and iterative

process. 
• The most common type of tool used to automatically parallelize a serial program is a parallelizing 

compiler or pre-processor. 
• A parallelizing compiler generally works in two different ways: 

– Fully Automatic 
• The compiler analyzes the source code and identifies opportunities for parallelism. 
• The analysis includes identifying inhibitors to parallelism and possibly a cost weighting on whether or not the parallelism 

would actually improve performance. 
• Loops (do, for) loops are the most frequent target for automatic parallelization. 

– Programmer Directed 
• Using "compiler directives" or possibly compiler flags, the programmer explicitly tells the compiler how to parallelize the 

code. 
• May be able to be used in conjunction with some degree of automatic parallelization also. 

• If you are beginning with an existing serial code and have time or budget constraints, then 
automatic parallelization may be the answer. However, there are several important caveats that 
apply to automatic parallelization: 
– Wrong results may be produced 
– Performance may actually degrade 
– Much less flexible than manual parallelization 
– Limited to a subset (mostly loops) of code 
– May actually not parallelize code if the analysis suggests there are inhibitors or the code is too complex 
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Designing Parallel Programs

• Understand the problem

• Decompose the problem

• Design inter-task communication and 
synchronization (requires understanding 
dependencies)
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Cost of Communication

• Inter-task communication virtually always implies 
overhead. 

• Machine cycles and resources that could be used for 
computation are instead used to package and transmit 
data. 

• Communications frequently require some type of 
synchronization between tasks, which can result in 
tasks spending time "waiting" instead of doing work. 

• Competing communication traffic can saturate the 
available network bandwidth, further aggravating 
performance problems. 
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Synchronous vs. Asynchronous 
Communication

• Synchronous communications require some type of "handshaking" 
between tasks that are sharing data. This can be explicitly structured in 
code by the programmer, or it may happen at a lower level unknown to 
the programmer. 

• Synchronous communications are often referred to as blocking
communications since other work must wait until the communications 
have completed. 

• Asynchronous communications allow tasks to transfer data independently 
from one another. For example, task 1 can prepare and send a message to 
task 2, and then immediately begin doing other work. When task 2 
actually receives the data doesn't matter. 

• Asynchronous communications are often referred to as non-blocking
communications since other work can be done while the communications 
are taking place. 

• Interleaving computation with communication is the single greatest 
benefit for using asynchronous communications. 
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Scope of Communication

• Knowing which tasks must communicate with 
each other is critical during the design stage of a 
parallel code. 

• Both of the two scopings described below can be 
implemented synchronously or asynchronously. 
– Point-to-point - involves two tasks with one task 

acting as the sender/producer of data, and the other 
acting as the receiver/consumer. 

– Collective - involves data sharing between more than 
two tasks, which are often specified as being 
members in a common group, or collective.  
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Types of Synchronization

• Barrier synchronization

• Lock/semaphore

• Synchronous communication
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Barrier Synchronization

• Usually implies that all tasks are involved 

• Each task performs its work until it reaches 
the barrier. It then stops, or "blocks". 

• When the last task reaches the barrier, all 
tasks are synchronized. 

• What happens from here varies. Often, a 
serial section of work must be done. In other 
cases, the tasks are automatically released to 
continue their work. 
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Lock/semaphore

• Can involve any number of tasks 
• Typically used to serialize (protect) access to 

global data or a section of code. Only one task at 
a time may use (own) the lock / semaphore / flag. 

• The first task to acquire the lock "sets" it. This 
task can then safely (serially) access the 
protected data or code. 

• Other tasks can attempt to acquire the lock but 
must wait until the task that owns the lock 
releases it. 

• Can be blocking or non-blocking 
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Synchronous Communication

• Involves only those tasks executing a 
communication operation 

• When a task performs a communication 
operation, some form of coordination is required 
with the other task(s) participating in the 
communication. 

• For example, before a task can perform a send 
operation, it must first receive an 
acknowledgment from the receiving task that it is 
OK to send. 
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Latency vs. Bandwidth

• Latency is the time it takes to send a minimal (0 
byte) message from point A to point B. 
Commonly expressed as microseconds. 

• Bandwidth is the amount of data that can be 
communicated per unit of time. Commonly 
expressed as megabytes/sec or gigabytes/sec. 

• Sending many small messages can cause latency 
to dominate communication overheads. Often it 
is more efficient to package small messages into a 
larger message, thus increasing the effective 
communications bandwidth. 
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Data Dependencies

• A dependence exists between program statements when 
the order of statement execution affects the results of the 
program. 

• A data dependence results from multiple use of the same 
memory location by different tasks. 

• Dependencies are important to parallel programming 
because they are one of the primary inhibitors to 
parallelism.

• How to Handle Data Dependencies: 
– Distributed memory architectures - communicate required data 

at synchronization points. 
– Shared memory architectures - synchronize read/write 

operations between tasks.  
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Example: Loop-carried data dependence

DO 500 J = MYSTART,MYEND 
A(J) = A(J-1) * 2.0 

500 CONTINUE
• The value of A(J-1) must be computed before the value of 

A(J), therefore A(J) exhibits a data dependency on A(J-1). 
Parallelism is inhibited. 

• If Task 2 has A(J) and task 1 has A(J-1), computing the 
correct value of A(J) necessitates: 
– Distributed memory architecture - task 2 must obtain the value 

of A(J-1) from task 1 after task 1 finishes its computation 
– Shared memory architecture - task 2 must read A(J-1) after task 

1 updates it 
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Example: Loop independent data 
dependence
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The value of Y is dependent 
on: 
• Distributed memory 
architecture - if or when the 
value of X is communicated 
between the tasks. 
• Shared memory architecture 
- which task last stores the 
value of X. 


