
Fortran Background and
Introduction

Shirley Moore
CPS5401 Fall 2014

http://svmoore.pbworks.com/
September 24, 2014

1

http://svmoore.pbworks.com/

Fortran

• Stands for “Formula Translation”

• Originally developed in the 1950s by a team led
by John Backus at IBM at their campus in south
San Jose, California

• Intended for scientific and engineering
applications

• One of the first high-level languages
– Freed programmers from writing in machine-specific

assembler language

– Programs were (somewhat) portable

2

Fortran for Scientific Programming

• One of the most popular languages in the area of
high-performance computing

• In continual use for over half a century in
computationally intensive areas such as
numerical weather prediction, finite element
analysis, computational fluid dynamics,
computational physics and computational
chemistry

• The language used for programs that benchmark
and rank the world's fastest supercomputers

3

Fortran Standards
• Fortran 66 – ANSI standard consisting of a common subset

of existing dialects
– But most compilers did not adhere to the standard

• Fortran 77 – ANSI standard based on vendor extensions and
preprocessors

• Fortran 90
– Responded to development in language design
– New features: array operations, pointers, user-defined derived

data types, modules for encapsulation, new control constructs,
dynamic storage, recursion

– Fortran 77 retained as a subset

• Subsequent standards
– Fortran 95 – minor revision
– Fortran 2003 – major revision
– Fortran 2008 – minor revision

4

Fortran vs. C/C++ for Scientific
Programming

• Problem dependence
– Fortran excels at array processing. If your problem can be described in terms

of simple data structures and particular arrays, Fortran is well suited.
– Fortran is better for numeric scientific computing.

• finite differences/elements, PDE solvers, electronic structure calculations

– C++ is better suited for complex and highly dynamic data structures.
• graphs, mesh generators, symbolic manipulation

• Skill dependence
– It takes a lot more programming experience to write efficient C/C++ programs

than to write efficient Fortran programs.
– You will probably get a better return on investment learning Fortran than

learning C/C++, assuming that your problem is suited to Fortran.
• Easier for a scientist to write fast programs in Fortran than in C/C++

• Project dependence
– The people you are working with
– Legacy code

• Possible to combine them

5

Resources

• Fortran 90 Tutorials
– http://www.cs.mtu.edu/~shene/COURSES/cs201/NOTES/fortran.html

– http://www.owlnet.rice.edu/~ceng303/manuals/fortran/

• Gfortran – the GNU Fortran compiler
– http://gcc.gnu.org/wiki/GFortran/

6

http://www.cs.mtu.edu/~shene/COURSES/cs201/NOTES/fortran.html
http://www.owlnet.rice.edu/~ceng303/manuals/fortran/
http://gcc.gnu.org/wiki/GFortran/

