CPS 5401 Intro to Computational Science
Shirley Moore, Instructor
August 27, 2014 Class

Name	 		
Name	 	 	

	Microprocessor Architecture					
1.	What processor is inside the Linux lab machines? How did you find out? What is the "codename" for this processor? What do the parts of the numeric processor name mean? What is the processor speed and what does it mean? What is the peak flops/s of this processor? See http://www.realworldtech.com/sandy-bridge/ for more information.					
2.	List the generations of Intel processors, starting with Nehalem/Westmere. See http://ark.intel.com , for information.					
of res	ercise 1.1, p. 12. Let us compare the speed of a classical FPU and a pipelined one. Let I be the number states in the pipeline and let s be the startup cost. Let n be the number of operations. Show that the sult rate for the pipelined FPU is dependent on n : give a formula for $r(n)$ and for $r_{\infty} = \lim_{n \to \infty} r(n)$. What the asymptotic improvement over the non-pipelined case? Let $n_{1/2}$ be the number of operations that					
acl	nieves half the asymptotic rate. Find $n_{1/2}$ in terms of s and l .					
n_1	ercise 1.2. p. 13. A linked triad is an operation of the form $a_i \leftarrow b_i + c \cdot d_i$. Find the result rate and $a_i = a_i + c \cdot d_i$ and the result rate and emory in between.					
Exe	ercise 1.4, p.13. Find the result rate and $n_{ m 1/2}$ for a processor with p pipelines that operate in parallel.					