Consider, again, the one-dimesional heat equation, $u_{t}=u_{x x}, 0<x<1, t>0$, subject to homogeneous Dirichlet boundary conditions:

$$
u(0, t)=0, \quad u(1, t)=0
$$

and the initial condition:

$$
u(x, 0)=f(x)=\left\{\begin{array}{cc}
2 x & 0 \leq x \leq \frac{1}{2} \\
2-2 x & \frac{1}{2} \leq x \leq 1
\end{array}\right.
$$

This time, we approximate the solution to a value of $u(x, t)$ using the implicit finite difference scheme consisting of a backward difference in time and centered difference in space.

Suppose we choose $N=4$ intervals on $[0,1]$ and set $x_{0}=0, x_{1}=\frac{1}{4}, x_{2}=\frac{1}{2}, x_{3}=\frac{3}{4}$ and $x_{4}=1$. Let U_{j}^{m} denote an approximation to the exact solution $u\left(x_{j}, t_{m}\right)$. If we set $t_{0}=0$ then the implicit finite difference scheme based on centered differences in space and a backward difference in time (see lecture notes) yields 3 equations for approximations to $u(x, t)$ at the interior space nodes, at each new level t_{m}. We have:

$$
U_{j}^{m}=-\nu U_{j-1}^{m+1}+(1+2 \nu) U_{j}^{m+1}-\nu U_{j+1}^{m+1}, \quad j=1: 3, \quad m=1,2, \ldots
$$

where $\nu=\frac{k}{h^{2}}$. The boundary conditions give values for the end points at each time level:

$$
U_{0}^{m}=U_{4}^{m}=0, \quad m=1,2, \ldots
$$

With $h=\frac{1}{4}$, we obtain three equations for the unknown values $U_{1}^{m+1}, U_{2}^{m+1}, U_{3}^{m+1}$ at each new time step:

$$
\begin{aligned}
& \begin{array}{ccccc}
(1+32 k) U_{1}^{m+1} & -16 k U_{2}^{m+1} & & U_{1}^{m} \\
-16 k U_{1}^{m+1} & +(1+32 k) U_{2}^{m+1} & -16 k U_{3}^{m+1} & = & U_{2}^{m} \\
& -16 k U_{2}^{m+1} & +(1+32 k) U_{3}^{m+1} & = & U_{3}^{m}
\end{array} \\
& \Rightarrow\left(\begin{array}{ccc}
1+32 k & -16 k & 0 \\
-16 k & 1+32 k & -16 k \\
0 & -16 k & 1+32 k
\end{array}\right)\left(\begin{array}{c}
U_{1}^{m+1} \\
U_{2}^{m+1} \\
U_{3}^{m+1}
\end{array}\right)=\left(\begin{array}{c}
U_{1}^{m} \\
U_{2}^{m} \\
U_{3}^{m}
\end{array}\right) \text {. }
\end{aligned}
$$

If we set $t_{0}=0$ and choose $k=0.01$ and notice that the initial condition gives:

$$
U_{1}^{0}=f\left(x_{1}\right)=\frac{1}{2}, \quad U_{2}^{0}=f\left(x_{2}\right)=1, \quad U_{3}^{0}=f\left(x_{3}\right)=\frac{1}{2}
$$

we then have to solve the 3×3 linear system

$$
\left(\begin{array}{ccc}
1.32 & -0.16 & 0 \\
-0.16 & 1.32 & -16 k \\
0 & -0.16 & 1.32
\end{array}\right)\left(\begin{array}{c}
U_{1}^{1} \\
U_{2}^{1} \\
U_{3}^{1}
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{2} \\
1 \\
\frac{1}{2}
\end{array}\right)
$$

(by hand or using MATLAB) for the solution at $t_{1}=0.01$. You can attempt to solve this system by hand or use the matlab code trisolve.m. ie by typing:

$$
\text { u1=trisolve(} 3,-0.16,1.32,-0.16,[1 / 2 ; 1 ; 1 / 2])
$$

The solution is $U_{1}^{1}=0.4849, U_{2}^{2}=0.8751, U_{3}^{2}=0.4849$. To obtain the approximations at the next time step $t_{2}=0.02$, we have to solve another tri-diagonal system with the same coefficient matrix but where the righthand side vector is the solution at the first time step. We can compute this via:

```
u2=trisolve(3,-0.16,1.32,-0.16,[0.4849;0.8751;0.4849])
```

and so on...

Example Suppose we repeat the experiment we performed on the last handout with the explicit finite difference scheme. With the earlier method, we saw that choosing $k=0.0013$ in combination with $h=\frac{1}{20}$ led to unstable results. In the figures below we plot the approximations obtained with these values of h and k using the new implicit scheme at time steps $t_{1}=0.0013, t_{25}=0.0325$ and $t_{50}=0.0650$. Notice that there are no oscillations now.

Figure 1: Exact solution and numerical approximations to the solution at time steps: 1, 25, and 50 (left to right). Implicit finite difference scheme, $h=\frac{1}{20}, k=0.0013, \nu=0.52$.

In fact, there are no restrictions now on the choice of k with respect to h. The method is stable for any value of $\nu=\frac{k}{h^{2}}$.

To reproduce the above results, you will need to recursively solve a tri-diagonal system of equations, changing the right-hand side vector in each case to the solution in the previous step. The matlab code heat_eq_implicit_fd will do this for you. Download it and perform the above experiment. Eg. to generate the approximation at t_{25} with $k=0.0013$ and $N=20$ type:
[u_approx,u_exactx]=heat_eq_implicit_fd(20,0.0013,25);

