Implicit Finite Difference Scheme for the Heat Equation MATH20411

Consider, again, the one-dimesional heat equation, u; = uz,;, 0 < x < 1,t > 0, subject to homogeneous Dirichlet
boundary conditions:
u(0,t) =0, wu(l,t)=0,

and the initial condition:

w0 =10 ={ 2,

This time, we approximate the solution to a value of u(x,t) using the implicit finite difference scheme consisting
of a backward difference in time and centered difference in space.

Suppose we choose N = 4 intervals on [0,1] and set g =0, 1 = 3, 2 = %, T3 = % and x4 = 1. Let U™ denote
an approximation to the exact solution u(z;,t,,). If we set o 0 then the implicit finite difference scheme
based on centered differences in space and a backward difference in time (see lecture notes) yields 3 equations for
approximations to u(x,t) at the interior space nodes, at each new level ¢,,. We have:

1
VRl

U= —vUM + L+ 20) UM —wU T, j=1:3, m=1.2,...

where v = h% The boundary conditions give values for the end points at each time level:

Ulr=U"=0, m=12,...

With h = i, we obtain three equations for the unknown values U™ U1 U5+ at each new time step:
(1+ 32k) U —16kU5" = up
—16kU T 4 (14 32k) UM —16kU = Uy
—16kUy" ! +(1+328) U = Uy
1+32k —16k 0 umtt um
= | -16k 1432k —16k uptt | = o
0 —16k 1+ 32k Uyt U

If we set tg = 0 and choose & = 0.01 and notice that the initial condition gives:

1 1
Ui):f(ﬂll):§7 Uy = f(x2) = 1, U():f(xzs):i,
we then have to solve the 3 x 3 linear system
132 —016 0 Ut :
-0.16 132 —16k ui |=11
0 -0.16 1.32 U3 3

(by hand or using MATLAB) for the solution at ¢; = 0.01. You can attempt to solve this system by hand or use
the matlab code trisolve.m. ie by typing:

ul=trisolve(3,-0.16,1.32,-0.16,[1/2;1;1/2]).

The solution is U{ = 0.4849, U7 = 0.8751, U3 = 0.4849. To obtain the approximations at the next time step
to = 0.02, we have to solve another tri-diagonal system with the same coefficient matrix but where the righthand
side vector is the solution at the first time step. We can compute this via:

u2=trisolve(3,-0.16,1.32,-0.16,[0.4849;0.8751;0.4849])

and so on...

Example Suppose we repeat the experiment we performed on the last handout with the explicit finite difference
scheme. With the earlier method, we saw that choosing k¥ = 0.0013 in combination with h = % led to unstable

results. In the figures below we plot the approximations obtained with these values of h and k using the new
implicit scheme at time steps t; = 0.0013,t25 = 0.0325 and t59 = 0.0650. Notice that there are no oscillations

now.
—_— Exact Solll.nioln " —_— Exact $0ITJti0|n . —— Exact Solution
—e— Numerical solution —e— Numerical solution —e— Numerical solution
1 0.7 0.45
0.9
0.6 0.4
0.8
0.35
0.7 05
0.3
0.6
0.4 0.25
0.5
0.4 03 o2
03 02 0.15
02 0.1
0.1
0.1 0.05
0 0.2 0.4 0.6 0.8 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8

Figure 1: Exact solution and numerical approximations to the solution at time steps: 1, 25, and 50 (left to right).

Implicit finite difference scheme, h = %, k =0.0013, v = 0.52.

In fact, there are no restrictions now on the choice of k£ with respect to h. The method is stable for any value of
E

V= R

To reproduce the above results, you will need to recursively solve a tri-diagonal system of equations, changing
the right-hand side vector in each case to the solution in the previous step. The matlab code heat_eq_implicit_fd
will do this for you. Download it and perform the above experiment. Eg. to generate the approximation at to5
with £ = 0.0013 and N = 20 type:

[u_approx,u_exactx]=heat_eq_implicit_£d(20,0.0013,25);

