Implicit Finite Difference Scheme for the Heat Equation MATH20411

Consider, again, the one-dimesional heat equation, u; = uz,;, 0 < x < 1,t > 0, subject to homogeneous Dirichlet
boundary conditions:
u(0,t) =0, wu(l,t)=0,

and the initial condition:

w0 =10 ={ 2,

This time, we approximate the solution to a value of u(x,t) using the implicit finite difference scheme consisting
of a backward difference in time and centered difference in space.

Suppose we choose N = 4 intervals on [0,1] and set g =0, 1 = 3, 2 = %, T3 = % and x4 = 1. Let U™ denote
an approximation to the exact solution u(z;,t,,). If we set o 0 then the implicit finite difference scheme
based on centered differences in space and a backward difference in time (see lecture notes) yields 3 equations for
approximations to u(x,t) at the interior space nodes, at each new level ¢,,. We have:
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where v = h% The boundary conditions give values for the end points at each time level:

Ulr=U"=0, m=12,...

With h = i, we obtain three equations for the unknown values U™ U1 U5+ at each new time step:
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If we set tg = 0 and choose & = 0.01 and notice that the initial condition gives:
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we then have to solve the 3 x 3 linear system
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(by hand or using MATLAB) for the solution at ¢; = 0.01. You can attempt to solve this system by hand or use
the matlab code trisolve.m. ie by typing:

ul=trisolve(3,-0.16,1.32,-0.16,[1/2;1;1/2]).

The solution is U{ = 0.4849, U7 = 0.8751, U3 = 0.4849. To obtain the approximations at the next time step
to = 0.02, we have to solve another tri-diagonal system with the same coefficient matrix but where the righthand
side vector is the solution at the first time step. We can compute this via:

u2=trisolve(3,-0.16,1.32,-0.16,[0.4849;0.8751;0.4849])

and so on...



Example Suppose we repeat the experiment we performed on the last handout with the explicit finite difference
scheme. With the earlier method, we saw that choosing k¥ = 0.0013 in combination with h = % led to unstable

results. In the figures below we plot the approximations obtained with these values of h and k using the new
implicit scheme at time steps t; = 0.0013,t25 = 0.0325 and t59 = 0.0650. Notice that there are no oscillations

now.
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Figure 1: Exact solution and numerical approximations to the solution at time steps: 1, 25, and 50 (left to right).

Implicit finite difference scheme, h = %, k =0.0013, v = 0.52.

In fact, there are no restrictions now on the choice of k£ with respect to h. The method is stable for any value of
E

V= R

To reproduce the above results, you will need to recursively solve a tri-diagonal system of equations, changing
the right-hand side vector in each case to the solution in the previous step. The matlab code heat_eq_implicit_fd
will do this for you. Download it and perform the above experiment. Eg. to generate the approximation at to5
with £ = 0.0013 and N = 20 type:

[u_approx,u_exactx]=heat_eq_implicit_£d(20,0.0013,25);



