
Implicit Finite Difference Scheme for the Heat Equation MATH20411

Consider, again, the one-dimesional heat equation, ut = uxx, 0 < x < 1, t > 0, subject to homogeneous Dirichlet
boundary conditions:

u(0, t) = 0, u(1, t) = 0,

and the initial condition:

u(x, 0) = f(x) =
{

2x 0 ≤ x ≤ 1
2

2− 2x 1
2 ≤ x ≤ 1 .

This time, we approximate the solution to a value of u(x, t) using the implicit finite difference scheme consisting
of a backward difference in time and centered difference in space.

Suppose we choose N = 4 intervals on [0, 1] and set x0 = 0, x1 = 1
4 , x2 = 1

2 , x3 = 3
4 and x4 = 1. Let Um

j denote
an approximation to the exact solution u(xj , tm). If we set t0 = 0 then the implicit finite difference scheme
based on centered differences in space and a backward difference in time (see lecture notes) yields 3 equations for
approximations to u(x, t) at the interior space nodes, at each new level tm. We have:

Um
j = −νUm+1

j−1 + (1 + 2ν)Um+1
j − νUm+1

j+1 , j = 1 : 3, m = 1, 2, . . .

where ν = k
h2 . The boundary conditions give values for the end points at each time level:

Um
0 = Um

4 = 0, m = 1, 2, . . .

With h = 1
4 , we obtain three equations for the unknown values Um+1

1 , Um+1
2 , Um+1

3 at each new time step:

(1 + 32k) Um+1
1 −16kUm+1

2 = Um
1

−16kUm+1
1 + (1 + 32k)Um+1

2 −16kUm+1
3 = Um

2

−16kUm+1
2 +(1 + 32k)Um+1

3 = Um
3

⇒



1 + 32k −16k 0
−16k 1 + 32k −16k

0 −16k 1 + 32k







Um+1
1

Um+1
2

Um+1
3


 =




Um
1

Um
2

Um
3


 .

If we set t0 = 0 and choose k = 0.01 and notice that the initial condition gives:

U0
1 = f(x1) =

1
2
, U0

2 = f(x2) = 1, U0
3 = f(x3) =

1
2
,

we then have to solve the 3× 3 linear system



1.32 −0.16 0
−0.16 1.32 −16k

0 −0.16 1.32







U1
1

U1
2

U1
3


 =




1
2
1
1
2


 .

(by hand or using MATLAB) for the solution at t1 = 0.01. You can attempt to solve this system by hand or use
the matlab code trisolve.m. ie by typing:

u1=trisolve(3,-0.16,1.32,-0.16,[1/2;1;1/2]).

The solution is U1
1 = 0.4849, U2

2 = 0.8751, U2
3 = 0.4849. To obtain the approximations at the next time step

t2 = 0.02, we have to solve another tri-diagonal system with the same coefficient matrix but where the righthand
side vector is the solution at the first time step. We can compute this via:

u2=trisolve(3,-0.16,1.32,-0.16,[0.4849;0.8751;0.4849])

and so on...

1



Example Suppose we repeat the experiment we performed on the last handout with the explicit finite difference
scheme. With the earlier method, we saw that choosing k = 0.0013 in combination with h = 1

20 led to unstable
results. In the figures below we plot the approximations obtained with these values of h and k using the new
implicit scheme at time steps t1 = 0.0013, t25 = 0.0325 and t50 = 0.0650. Notice that there are no oscillations
now.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Exact Solution
Numerical solution

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

Exact Solution
Numerical solution

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

 

 

Exact Solution
Numerical solution

Figure 1: Exact solution and numerical approximations to the solution at time steps: 1, 25, and 50 (left to right).
Implicit finite difference scheme, h = 1

20 , k = 0.0013, ν = 0.52.

In fact, there are no restrictions now on the choice of k with respect to h. The method is stable for any value of
ν = k

h2 .

To reproduce the above results, you will need to recursively solve a tri-diagonal system of equations, changing
the right-hand side vector in each case to the solution in the previous step. The matlab code heat eq implicit fd
will do this for you. Download it and perform the above experiment. Eg. to generate the approximation at t25
with k = 0.0013 and N = 20 type:

[u_approx,u_exactx]=heat_eq_implicit_fd(20,0.0013,25);

2


