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Chapter 1

Overview of PDEs

1.1 Classification of PDEs

The classification of PDEs is important for the numerical solution you choose.

A(x, y)Uxx + 2B(x, y)Uxy + C(x, y)Uyy = F (x, y, Ux, Uy, U)

1.1.1 Elliptic

AC > B2

For example, Laplace’s equation:

Uxx + Uyy = 0

A = C = 1, B = 0

1.1.2 Hyperbolic

AC < B2

For example the 1-D wave equation:

Uxx =
1

c2
Utt

A = 1, C = −1/c2, B = 0

8
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1.1.3 Parabolic

AC = B2

For example, the heat or diffusion Equation

Ut = βUxx

A = 1, B = C = 0

1.2 Implicit Vs Explicit Methods to Solve PDEs

Explicit Methods:

• possible to solve (at a point) directly for all unknown values in the
finite difference scheme.

• stable only for certain time step sizes (or possibly never stable!). Sta-
bility can be checked using Fourier or von Neumann analysis. Time
step size governed by Courant condition for wave equation.

Implicit Methods:

• there is no explicit formula at each point, only a set of simultaneous
equations which must be solved over the whole grid.

• Implicit methods are stable for all step sizes.

1.3 Well-posed and ill-posed PDEs

The heat equation is well-posed Ut = Uxx. However the backwards heat
equation is ill-posed : Ut = −Uxx ⇒ at high frequencies this blows up!

In order to demonstrate this we let U(x, t) = an(t) sin(nx)
then:

Uxx = −an(t)n
2 sin(nx), and Ut = ȧn(t) sin(nx)
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Ut = Uxx
︸ ︷︷ ︸

Heat Equation

⇒ ȧn(t) sin(nx) = −an(t)n
2 sin(nx)

ȧn = −ann
2 ⇒ an(t) = an(0)e

−n2t

For the heat equation the transient part of the solution decays and this has
stable numerical solutions.

Ut = −Uxx
︸ ︷︷ ︸

Backwards Heat Equation

⇒ ȧn(t) sin(nx) = an(t)n
2 sin(nx)

ȧn = ann
2 ⇒ an(t) = an(0)e

n2t

For the backwards heat equation the transient part of the solution blows up
and the numerical solution would fail! In general it is difficult or impossible
to obtain numerical solutions for ill-posed PDEs.



Part I

Numerical solution of parabolic
equations
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Chapter 2

Explicit methods for 1-D heat
or diffusion equation

We will focus on the heat or diffusion equation for the next few chapters.
This is an example of a parabolic equation.

2.1 Analytic solution: Separation of variables

First we will derive an analtical solution to the 1-D heat equation. Consider
the temperature U(x, t) in a bar where the temperature is governed by the
heat equation, Ut = βUxx. The ends of the bar are cooled to 0 ◦C and the
initial temperature of the bar is 100 ◦C.

�U(0, t) = 0 ◦C - U(L, t) = 0 ◦C

U(x, 0) = 100 ◦C
6

We want to solve Ut = βUxx using separation of variables. We assume that
the solution can be written as the product of a function of x and a function
of t, ie. U(x, t) = X(x)T (t) then:

Ut =
∂T

∂t
X = βT

∂2X

∂x2
= βUxx ⇒ divide by XT

12
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1

β

T ′(t)

T (t)
︸ ︷︷ ︸

function of t only

=
X ′′(x)

X(x)
︸ ︷︷ ︸

function of x only

= −λ2

︸ ︷︷ ︸

constant

(2.1)

The only way the LHS and RHS of equation 2.1 can be a function of t and
x respectively is if they are both equal to a constant which we define to be
−λ2 for convenience.

T ′ + λ2βT = 0 ⇒ T = e−λ2βt

X ′′ + λ2X = 0 ⇒ X = A sinλx+ B cosλx

Use boundary conditions U(t, 0) = 0 ⇒ X(0) = 0 = B

U(t, L) = 0 ⇒ X(L) = 0 = A sinλ

t ⇒ λ = λn =
nπ

L
, n = 1, 2, . . .

U(x, t) = X(x)T (t)

=
∞∑

n=1

An sin(
nπx

L
)e−λ2βt

e−λ2βt is a transient solution and decays in time to boundary conditions.
Use initial conditions U(0, x) = 100 ◦C to find An :

U(0, x) = T0 =
∞∑

n=1

An sin (nπx/L)

Use orthogonality:
∫ L
0 sin(nπx

L
) sin(mπx

L
)dx = δnm

and cos(mπ)− 1 = 0, for m = 0, 2, 4, . . .
and cos(mπ)− 1 = −2, for m = 1, 3, 5, . . .

⇒ Am = T0 [−L/mπ(cos(mπ)− 1)]

=
−2L

mπ
T0

for m=1,3,5,. . .
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2.2 Numerical solution of 1-D heat equation

2.2.1 Difference Approximations for Derivative Terms
in PDEs

We consider U(x, t) for 0 ≤ x ≤ a, 0 ≤ t ≤ T
Discretise time and spatial variable x:

∆t =
T

m
, ∆x =

a

n+ 1
,

tk = k∆t, 0 ≤ k ≤ m xj = j∆x, 0 ≤ j ≤ n+ 1

Let Uk
j = U(xj, tk)

Consider Taylor series expansion for Uk+1
j :

Uk+1
j = Uk

j +∆t
∂Uk

j

∂t
+

∆t2

2

∂2Uk
j

∂t2
+ 0(∆t3) (2.2)

If we only consider 0(∆t) terms in equation 2.2 then we arrive at the forward
difference in time approximation for Ut:

∂Uk
j

∂t
=

Uk+1
j − Uk

j

∆t
+ 0(∆t)

We can also derive a higher order approximation for Ut if we consider the
Taylor series expansion for Uk−1

j as well:

Uk−1
j = Uk

j −∆t
∂Uk

j

∂t
+

∆t2

2

∂2Uk
j

∂t2
+ 0(∆t3) (2.3)

2.2− 2.3 ⇒ ∂Uk
j

∂t
=

Uk+1
j − Uk−1

j

2∆t
+ 0(∆t2) ⇒ leap-frog (or centred difference) in time.

This gives higher order accuracy than forward difference.
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We can also perform similar manipulations to arrive at approximations for
the second derivative Utt:

2.2 + 2.3− 2Uk
j ⇒ ∂2Uk

j

∂t2
=

Uk+1
j + Uk−1

j − 2Uk
j

∆t2
+ 0(∆t2) ⇒ central difference

The finite difference method makes use of the above approximations to solve
PDEs numerically.

2.2.2 Numerical solution of 1-D heat equation using
the finite difference method

Ut = βUxx

Initial conditions

U(0, x) = f(x)

Types of boundary conditions

Neumann boundary conditions

Ux(t, 0) = g1(t)

Ux(t, a) = g2(t)

Dirichlet boundary conditions

U(t, 0) = g1(t)

U(t, a) = g2(t)

Mixed boundary conditions

U(t, 0) = g1(t)

Ux(t, a) = g2(t)
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2.2.3 Explicit Forward Euler method

or FTCS (Foward Time Centred Space)

We want to solve the 1-D heat equation:

Ut = βUxx. (2.4)

We solve this PDE for points on a grid using the finite difference method
where we discretise in x and t for 0 ≤ x ≤ a and 0 ≤ t ≤ T :

t0 t1 t2 t3 . . . tm−1 tm = T

x0

x1

x2

x3

...

xn

xn+1 = a

We discretise in time with time step: ∆t = T/m and in space with grid
spacing: ∆x = a/(n+ 1), and let tk = k∆t where 0 ≤ k ≤ m and xj = j∆x
where 0 ≤ j ≤ n+ 1.

Let Uk
j = U(xj, tk) then the finite difference approximations for equation

(2.4) are given by:

∂U(xj, tk)

∂t
=

Uk+1
j − Uk

j

∆t
+O(∆t), Forward Euler method for time derivative,

∂2U(xj, tk)

∂x2
=

Uk
j+1 − 2Uk

j + Uk
j−1

∆x2
+O(∆x2),Central difference method for spatial derivativ

Our discretised PDE (equation (2.4)) becomes:

Uk+1
j − Uk

j

∆t
=

β

∆x2

(

Uk
j+1 − 2Uk

j + Uk
j−1

)

,

or Uk+1
j = s

(

Uk
j+1 + Uk

j−1

)

+ (1− 2s)Uk
j ,

where s =
β∆t

∆x2
.
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Uk+1
j is the solution for the temperature at the next time step.

Suppose we have initial conditions U(x, 0) = U0
j = f(xj), and mixed bound-

ary conditions:

Dirichlet boundary conditions at x = 0: U(0, t) = Uk
0 = g1(tk),

Neumann boundary conditions at x = a: Ux(a, t) =
∂Uk

n+1

∂x
= g2(tk),

Numerical implementation of Explicit Forward Euler method

Solving equation (2.4): Ut = βUxx with:
initial conditions: U0

j = f(xj) = U(x, t = 0),
Dirichlet boundary conditions at x = 0: U(x = 0, t) = Uk

0 = g1(tk) and
Neumann boundary conditions at x = a: ∂U(a, t)/∂x = ∂Uk

n+1/∂x = g2(tk).

To solve using the Neumann boundary condition we need an extra step:

∂Uk
n+1

∂x
≈ Uk

n+1 − Uk
n

∆x
= g2(tk),

or Uk
n+1 = ∆xg2(tk) + Uk

n . (2.5)

We can write out the matrix system of equations we will solve numerically
for the temperature U . Suppose we use 5 grid points x0, x1, x2, x3, x4 = xn+1,
ie. n = 3 in this example:

x0 = 0 x1 x2 x3 x4 = xn+1 = a

We let:

~Uk =






Uk
1

Uk
2

Uk
3




 , solution for temperature vector ~Uk at time tk.

The boundary conditions give Uk
0 = U(x = 0, tk) and Uk

n+1 = Uk
4 = U(x =

a, tk).
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We can rewrite Uk+1
j = s

(

Uk
j+1 + Uk

j−1

)

+ (1− 2s)Uk
j in matrix form:

~Uk+1 =






Uk+1
1

Uk+1
2

Uk+1
3




 =






1− 2s s 0
s 1− 2s s
0 s 1− 2s











Uk
1

Uk
2

Uk
3




+






sUk
0

0
sUk

4






(2.6)

Using boundary conditions: Uk
0 = g1(tk) and Uk

4 = ∆xg2(tk) + Uk
3 equation

(2.6) becomes:

~Uk+1 =






Uk+1
1

Uk+1
2

Uk+1
3




 =








1− 2s s 0
s 1− 2s s
0 s 1− s

︸ ︷︷ ︸

Neumann bc








︸ ︷︷ ︸

A






Uk
1

Uk
2

Uk
3




+












Dirichlet bc
︷ ︸︸ ︷

sg1(tk)
0

s∆xg2(tk)
︸ ︷︷ ︸

Neumann bc












︸ ︷︷ ︸

b

or ~Uk+1 = A~Uk +~b (2.7)

The term (1− s) in the matrix A above and the term (s∆xg2(tk)) in vector
~b above are from the Neumann boundary condition given using the approxi-
mation in equation (2.5).

Matlab code for Explicit Forward Euler method

The matlab code can be downloaded here for details of the numerical coding
of the example below:

Solving equation (2.4): Ut = βUxx with 0 ≤ x ≤ 1 and 0 ≤ t ≤ 12, 000, using
m = 600 time steps, and n = 39 for 41 grid points in x.

Initial conditions: U(x, t = 0) = 2x+ sin(2πx) + 1,
and Dirichlet boundary conditions at x = 0: U(x = 0, t) = 1 and Neumann
boundary conditions at x = 1: ∂U(x = 1, t)/∂x = 2.

With these boundary conditions we can check that the numerical solution
approximates the steady state solution U(x, t) = 2x + 1 as t → ∞. Your
solution using the finite difference code can also be checked using Matlab’s
PDE solver (using pdex1).

http://www.uq.edu.au/~uqlkett1/Louise_Olsen_Teaching_Info/MATH3203LectureNotes/ForwardEuler.m
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Figure 2.1: Initial conditions in (a) and matlab solution using Forward Euler
method for temperature distribution along rod with time in (b)

Figure 2.1 shows the initial conditions in (a) and matlab solution for tem-
perature distribution along rod with time in (b). The numerical solution
matches the analytical solution reasonably well: U(x, t) = 2x+1 at the final
time. However the Neumann boundary condition at x = 1 introduces error
through the approximation to the spatial derivative in this initial condition
so the numerical solution at x = 1 is not exactly U = 3 but close to it.

2.2.4 Stability criteria for forward Euler method

Suppose U(x, 0) = f(x) = ξ cos (πx/∆x) where these initial conditions data
oscillate with the same frequency as the grid, ∆x = a/n+1, As before we
let xj = j∆x, 0 ≤ j ≤ n+ 1

f(xj) = ξ cos(πj) = ξ(−1)j

Using finite difference discretisation of (2.4) Ut = βUxx:

Uk+1
j = s(Uk

j+1 + Uk
j−1) + (1− 2s)Uk

j

At first time step (k = 1):

U1
j = (1− 2s)ξ(−1)j + sξ [(−1)j+1 + (−1)j−1]

︸ ︷︷ ︸

−2(−1)j

= (1− 4s)ξ(−1)j
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At k = 2:

U2
j = (1− 2s)U1

j + s(U1
j+1 + U1

j−1)

U2
j = (1− 2s)(1− 4s)ξ(−1)j + s [(1− 4s)ξ(−1)j+1 + (1− 4s)ξ(−1)j−1]

︸ ︷︷ ︸

−2(1−4s)ξ(−1)j

= (1− 4s)2ξ(−1)j

Therefore at k = n

Un
j = (1− 4s)nξ(−1)j

NB: the term (1− 4s) determines stability.
This solution for Un

j will become unbounded as n → ∞ if |1 − 4s| ≥ 1 or
s > 1/2.
We know the exact solution |U(x, t)| ≤ |U(x, t0)| = ξ ∀ x, t.
The Forward Euler method is only stable if s (known as the gain parameter)
satisfies 0 ≤ s ≤ 1/2 or equivalently the time step satisfies: ∆t ≤ ∆x2/2β.
You can check that using the matlab code that when the time step exceeds
this value that the numerical solution becomes unstable.

2.3 Method of lines

There are other explicit numerical methods that can be applied to the 1-
D heat or diffusion equation such as the Method of Lines which is used
by Matlab and Mathematica. The trick with the Method of Lines is that
it replaces all spatial derivatives with finite differences but leaves the time
derivatives. It is then possible to use a stiff ordinary differential equation
solver on the time derivatives in the resulting system.

2.3.1 Example

Download the matlab code for this example here and here.

We are solving the same system again with the method of lines: Ut = βUxx

where the initial conditions are U(x, 0) = sin(2πx) + 2x+ 1
0 ≤ x ≤ 1, β = 10−5, 0 ≤ t ≤ 12, 000.
boundary conditions are U(0, t) = 1 and Ux(1, t) = 2
Again we get:

∂~U

∂t
= A~U +~b

http://www.uq.edu.au/~uqlkett1/Louise_Olsen_Teaching_Info/MATH3203LectureNotes/ForwardEuler.m
http://www.uq.edu.au/~uqlkett1/Louise_Olsen_Teaching_Info/MATH3203LectureNotes/MethodOfLines.m
http://www.uq.edu.au/~uqlkett1/Louise_Olsen_Teaching_Info/MATH3203LectureNotes/Uprime.m
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How? Replace

Uxx =
Uj+1 − 2Uj + Uj−1

∆x2
,

where U(xj, t) = Uj(t), xj = j∆x, 0 ≤ j ≤ n+ 1
∆x = a/(n+ 1) = 1/(n+ 1) (a = 1)
with boundary conditions: U(0, t) = U0(t) = 1

∂U

∂x
(1, t) =

∂Un+1

∂x
(t) ≃ Un+1 − Un

∆x
= 2 ⇒ Un+1 = Un + 2∆x

In matrix form for n = 3 elements:

x0 = 0 x1 x2 x3 x4 = 1

∂~U

∂t
=






U̇1

U̇2

U̇3




 =

β

∆x2






−2 1 0
1 −2 1
0 1 −1











U1

U2

U3




+

β

∆x2






1
0

2∆x






~̇U = A~U +~b

We solve for ~U using ode45 using matlab code downloaded from here and
here.

http://www.uq.edu.au/~uqlkett1/Louise_Olsen_Teaching_Info/MATH3203LectureNotes/MethodOfLines.m
http://www.uq.edu.au/~uqlkett1/Louise_Olsen_Teaching_Info/MATH3203LectureNotes/Uprime.m


Chapter 3

Implicit methods for 1-D heat
equation

3.1 Implicit Backward Euler Method for 1-D

heat equation

• Unconditionally stable (but usually slower than explicit methods).

• implicit because it evaluates difference approximations to derivatives
at next time step tk+1 and not current time step we are solving for tk.

Uxx(tk+1, xj) =
Uk+1
j+1 − 2Uk+1

j + Uk+1
j−1

∆x2

Ut(tk+1, xj) =
Uk+1
j − Uk

j

∆t

Ut = βUxx becomes:

Uk
j = Uk+1

j − β∆t

∆x2
[Uk+1

j+1 − 2Uk+1
j + Uk+1

j−1 ]

= (1 + 2s)Uk+1
j − s(Uk+1

j+1 + Uk+1
j−1 ) (3.1)

where s = β∆t
∆x2 as before.

We still need to solve for Uk+1
j given Uk

j is known ⇒ This requires solving a

22
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tridiagonal linear system of n equations.
Again we let Uk

j = U(xj, tk); xj = j∆x, j = 0, ..., n + 1,∆x = a
n+1

; tk =

k∆t, k = 0, ...,m, and ∆t = T
m
.

3.1.1 Numerical implementation of the Implicit Back-
ward Euler Method

Again we are solving the same problem: Ut = βUxx, U(x, 0) = U0
j = f(xj)

3.1.2 Dirichlet boundary conditions

U(0, t) = 1 = Uk
0 , U(a, t) = U(1, t) = 3 = Uk

n+1 = Uk
4

For simplicity we consider only 4 elements in x in this example to find the
matrix system we need to solve for:

x0 = 0 x1 = 0.25 x2 = 0.5 x3 = 0.75 x4 = 1

Rewriting −s[Uk+1
j+1 + Uk+1

j−1 ] + (1 + 2s)Uk+1
j = Uk

j as a matrix equation:






1 + 2s −s 0
−s 1 + 2s −s
0 −s 1 + 2s






︸ ︷︷ ︸

Tridiagonal matrix






Uk+1
1

Uk+1
2

Uk+1
3






︸ ︷︷ ︸

Solution U at next time step

=






Uk
1

Uk
2

Uk
3




+ s






Uk+1
0

0
Uk+1
4






︸ ︷︷ ︸

given from b.c.

A~Uk+1 = ~Uk +~b

⇒ ~Uk+1 = A−1[~Uk +~b]

3.1.3 Mixed boundary conditions

The matlab code can be downloaded here for this example.

http://www.uq.edu.au/~uqlkett1/Louise_Olsen_Teaching_Info/MATH3203LectureNotes/BackwardEuler.m
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U(0, t) = 1 = Uk
0 , Ux(1, t) = 2 =

∂Uk
n+1

∂x

Using a leap-frog approximation for the spatial derivative:

∂Uk
j

∂x
=

Uk
j+1 − Uk

j−1

2∆x
+ 0(∆x2)

This is more accurate than the forward approximation we used previously
(see section 2.2.1):

∂Uk
j

∂x
=

Uk
j+1 − Uk

j

∆x
+ 0(∆x)

So for the Neumann boundary condition we have:

Ux(1, t) =
∂Uk

n+1

∂x
≈ Uk

n+2 − Uk
n

2∆x
= 2 (3.2)

With n = 4, Uk
5 is called a ‘ghost point’ because it lies outside the bar. So

using equation 3.2 we define Uk
5 :

⇒ Uk
5 = 4∆x+ Uk

3

Because we have Neumann boundary conditions at x = a(= 1), Uk
n+1 = Uk

4

is unknown, and given by equation 3.1:

Uk
4 = −s[Uk+1

5 + Uk+1
3 ] + (1 + 2s)Uk+1

4

use Uk+1
5 = 4∆x+ Uk+1

3

⇒ Uk
4 = −s[4∆x+ 2Uk+1

3 ] + (1 + 2s)Uk+1
4

Our system of equations becomes:











1 + 2s −s 0 0
−s 1 + 2s −s 0
0 −s 1 + 2s −s
0 0 −2s

︸ ︷︷ ︸

Neumann b.c.

1 + 2s











︸ ︷︷ ︸

A









Uk+1
1

Uk+1
2

Uk+1
3

Uk+1
4









︸ ︷︷ ︸

~Uk+1

=








Uk
1

Uk
2

Uk
3

Uk
4








︸ ︷︷ ︸

~Uk

+














Dirichlet b.c.
︷ ︸︸ ︷

sUk+1
0

0
0

4s∆x
︸ ︷︷ ︸

Neumann b.c.














︸ ︷︷ ︸

~b

Using an implicit solver means we have to invert the matrix A to solve for
~Uk+1 which is a lot more computationally expensive than the matrix multiply
operation in equation 2.7 to find ~Uk+1 for explicit solvers in section 2.2.3.

A~Uk+1 = ~Uk +~b = ~c

⇒ ~Uk+1 = A−1~c
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This method is stable for s ≥ 0 so larger time steps can be used for implicit
methods than explicit methods.
Download the matlab code here.
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Figure 3.1: Initial conditions in (a) and matlab solution using Backward
Euler method for temperature distribution along rod with time in (b)

Figure 3.1 shows the initial conditions in (a) and matlab solution for tem-
perature distribution along rod with time in (b). The solution using the
Backward Euler method in figure 3.1 is stable even for large time steps and
this matlab code uses a time step 6× greater than the solution using the For-
ward Euler method in figure 2.1. So even though there is more work in each
time step (inverting a matrix) using the implicit Backward Euler method it
allows larger time steps than the explicit Forward Euler method.

3.2 Crank-Nicolson Scheme

• Average of the explicit (forward Euler) and implicit (backward Euler)
schemes.

• Uses:

Ut =
Uk+1
j − Uk

j

∆t

Uxx =
1

2









Uk+1
j+1 − 2Uk+1

j + Uk+1
j

∆x2
︸ ︷︷ ︸

implicit

+
Uk
j+1 − 2Uk

j + Uk
j−1

∆x2
︸ ︷︷ ︸

explicit









http://www.uq.edu.au/~uqlkett1/Louise_Olsen_Teaching_Info/MATH3203LectureNotes/BackwardEuler.m
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• Often used for simple diffusion problems.



Chapter 4

Iterative methods

Implicit methods are stable - however they can take much longer to compute
than explicit methods. We saw that the Backward Euler method requires a
system of linear equations to be solved at each time step:

A~Uk+1 = ~c (where: ~c = ~Uk +~b)

where A is a tridiagonal matrix. How can we speed up this calculation? By
using iterative methods.

Iterative methods:

• improve the solution of A~x = ~b.

• use a direct method or a ‘guess’ for an initial estimate of the solution.

• useful for solving large, sparse systems (eg. tridiagonal matrix A in
Backward Euler scheme).

• many different methods such as Jacobi, Gauss-Seidel, relaxation meth-
ods.

• iterative methods are not always applicable and convergence criteria
need to be met before they can be applied. However they are ideal for
finite difference methods (involving solution of large sparse matrices).

Iterative methods begin with an initial guess for the solution ~x0 to the matrix
equation we are trying to solve: A~x = ~b. Each iteration updates the new
kth estimate (~xk) which converge on the exact solution ~x. Different methods
have different convergence times and for big inverse matrix problems are
much faster than direct matrix inverse methods.

27
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4.1 Jacobi method

A is decomposed into a sum of lower-triangular (L), diagonal (D) and upper-
triangular terms (U):

A = L+D + U�

�

�

�

A = D

L

U
@

@
@
@

@
@
@
@@

@
@
@
@
@
@

@
@@

4.1.1 Example

A for Backward Euler Method with Dirichlet boundary conditions:

A =












1 + 2s −s 0
−s 1 + 2s −s

. . . . . . . . .

−s 1 + 2s −s
0 −s 1 + 2s












⇒ D =









1 + 2s 0
1 + 2s

. . .

0 1 + 2s









,L =










0 0

−s
. . .
. . . . . .

0 −s 0










,U =










0 −s 0
. . . . . .

. . . −s
0 0










We want to solve A~x = b

⇒ (D + L+ U)~x = ~b

or D~x = b− (L+ U)~x

~x =









x1

x2
...
xn








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If ~xk is kth estimate of solution A~x = ~b then the (k + 1)th estimate is:

D~xk+1 = b− (L+ U)~xk (Jacobi Method)

Since D is diagonal (Dij = δijAij), we can write the vector equation above
for ~xk+1 for each component (xk+1

1 , ...xk+1
n ).

xk+1
i =

1

Aii
︸︷︷︸

D−1











bi −
∑

j 6=i

Aijx
k
j

︸ ︷︷ ︸

L+U part











, 1 ≤ i ≤ n (4.1)

4.1.2 Using the Jacobi method

To start the scheme use an initial guess ~x0, (eg. ~x0 = ~0). The iterations are

repeated until A~xk ≈ ~b or the residual:

|~b− A~xk| < error tolerance (eg.10−5)

Jacobi method converges to correct solution xk → x as k → ∞ if :

‖D−1(L+ U)‖ < 1 ⇒ |Aii| >
∑

j 6=i

|Aij|
︸ ︷︷ ︸

A is strictly diagonally dominant

, 1 ≤ i ≤ n

where ‖B‖ is the row-sum norm defined below:

‖B‖ =
n∑

j=1

|Bij|

The degree to which the convergence criteria:

|A| >
∑

j 6=i

|Aij|, 1 ≤ i ≤ n

holds is a measure of how fast the estimate ~xk converges to actual solution
~x.

Look for matlab code on this free source website: http://www.netlib.org/
which implements the Jacobi method and try for yourself.

http://www.netlib.org/
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4.2 Gauss-Seidel Method

• improves convergence of Jacobi method by simple modification

• in Jacobi method the new estimate, xk+1
i is computed using only the

current estimate, xk
j

• Gauss-Seidel method uses all the possible new estimates (j ≤ i− 1)
xk+1
i−1 , x

k+1
i−2 , ..., x

k+1
1 , xk+1

0 when updating the new estimate xk+1
i :

xk+1
i =

1

Aii



bi −
i−1∑

j=1

Aijx
k+1
j −

n∑

j=i+1

Aijx
k
j



 , 1 ≤ i ≤ n.

This is an improvement over the Jacobi method because it uses the new
estimate xk+1

j when it can. In vector form: ~xk+1 = D−1(b−L~xk+1−U~xk)
or (D + L)~xk+1 = b− Uxk.

• solution converges xk → x as k → ∞ if: ‖(D + L)−1U‖ ≤ 1.

4.2.1 Example: using Gauss-Seidel method to solve a
matrix equation

Download matlab code for this example here. Solve A~x = ~b for Res =
|b− Axk+1| < 1e−3 with:

A =






5 0 −2
3 5 1
0 −3 4




 , b =






7
2
−4




 , x0 =






0
0
0






with initial guess ~x0 =






0
0
0




⇒ takes 9 iterations. The Jacobi method needs

17 iterations to converge so takes nearly twice as long as the Gauss-Seidel
method.

Figure 4.1 shows the residual using the Gauss-Seidel method after each iter-
ation, it takes 9 iterations for the residual error to be less than 0.001.

http://www.uq.edu.au/~uqlkett1/Louise_Olsen_Teaching_Info/MATH3203LectureNotes/GaussSeidel.m
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Figure 4.1: Plot of residual using the Gauss-Seidel method after each itera-
tion

4.3 Relaxation Methods

Relaxation methods generalise Gauss-Seidel method by introducing a relax-
ation factor, α > 0. If α is optimised for the system this can increase the
rate of convergence of the solution xk by modifying the size of the correction:

xk+1
i = xk

i +
α

Aii



bi −
i−1∑

j=1

Aijx
k+1
j −

n∑

j=i

Aijx
k
j



 , 1 ≤ i ≤ n. (4.2)

This is called the successive relaxation (SR) method and for:

• 0 < α < 1 ⇒ under-relaxation

• α = 1 ⇒ Gauss-Seidel method

• α > 1 ⇒ over-relaxation

We can re-write equation 4.2:

xk+1
i = (1− α)xk

i +
α

Aii



bi −
i−1∑

j=1

Aijx
k+1
j −

n∑

j=i+1

Aijx
k
j



 , 1 ≤ i ≤ n

Solution converges, ie xk → x as k → ∞ if: ‖(D+αL)−1[(1−α)D−αU ]‖ < 1.



Chapter 5

2-D Finite Difference

5.1 2-D Poisson’s equation

Solving Laplace’s (f = 0) or Poisson’s equation in 2-D:

Uxx + Uyy = f (5.1)

We discretise in x and y-directions:

x0 x1 x2 x3 . . . xm xm+1 = a
y0

y1

y2

y3

...

yn
yn+1 = b

We discretise in x-direction with grid spacing: ∆x = a/(m + 1) and in
y-direction with grid spacing: ∆y = b/(n + 1), and let xk = k∆x where
0 ≤ k ≤ m + 1 and yj = j∆y where 0 ≤ j ≤ n + 1. We let Ukj = U(xk, yj)

32
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and fkj = f(xk, yj) We are solving equation (5.1) using Dirichlet boundary
conditions:

U(0, y) = U0,j = g0,j(yj)

U(a, y) = Um+1,j = gm+1,j(yj)

U(x, 0) = Uk,0 = gk,0(xk)

U(x, b) = Uk,n+1 = gk,n+1(xk)

Using central difference approximations for Uxx and Uyy then the finite dif-
ference approximations for equation (5.1) are given by:

∂2U

∂x2
= Uxx(xk, yj) =

Uk+1,j − 2Uk,j + Uk−1,j

∆x2
,

∂2U

∂x2
= Uyy(xk, yj) =

Uk,j+1 − 2Uk,j + Uk,j−1

∆y2
.

Our discretised PDE (equation 5.1) becomes (if ∆x = ∆y = h):

Uk+1,j − 2Uk,j + Uk−1,j

h2
+

Uk,j+1 − 2Uk,j + Uk,j−1

h2
= fk,j,

or Uk+1,j + Uk−1,j − 4Uk,j + Uk,j+1 + Uk,j−1 = h2fk,j. (5.2)

Since we have Dirichlet boundary conditions: the outer boundaries of the
region we are solving for are known: U0,j , Um+1,j , Uk,0, Uk,n+1, and we need to
find the interior values: Uk,j for 1 ≤ k ≤ m and 1 ≤ j ≤ n.

For example: m = 3 and n = 3:
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x0 x1 x2 x3 x4 = xm+1 = a
y0

y1

y2

y3

y4 = yn+1 = b

h h h

h h h

h h h

U11 U21 U31

U12 U22 U32

U13 U23 U33

Thus we need to solve for the interior values marked with a circle above as
the boundary values are already given. We let the vector of interior values
we are solving for be defined as:

~U =




















U11

U12

U13

U21

U22

U23

U31

U32

U33




















, vector of interior values we are solving for.

Thus the matrix system for ~U using equation (5.2):
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Uk+1,j + Uk−1,j − 4Uk,j + Uk,j+1 + Uk,j−1 = h2fk,j becomes:

k = 1
j = 1
k = 1
j = 2
k = 1
j = 3
k = 1
j = 1
k = 1
j = 2
k = 2
j = 3
k = 2
j = 1
k = 3
j = 2
k = 3
j = 3










































−4 1 0 1 0 0 0 0 0
Uk,j Uk,j+1 Uk+1,j

1 −4 1 0 1 0 0 0 0
Uk,j−1 Uk,j Uk,j+1 Uk+1,j

0 1 −4 0 0 1 0 0 0
Uk,j−1 Uk,j Uk+1,j

1 0 0 −4 1 0 1 0 0
Uk−1,j Uk,j Uk,j+1 Uk+1,j

0 1 0 1 −4 1 0 1 0
Uk−1,j Uk,j−1 Uk,j Uk,j+1 Uk+1,j

0 0 1 0 1 −4 0 0 1
Uk−1,j Uk,j−1 Uk,j Uk+1,j

0 0 0 1 0 0 −4 1 0
Uk−1,j Uk,j Uk,j+1

0 0 0 0 1 0 1 −4 1
Uk−1,j Uk,j−1 Uk,j Uk,j+1

0 0 0 0 0 1 0 1 −4
Uk−1,j Uk,j−1 Uk,j

















































































U11

U12

U13

U21

U22

U23

U31

U32

U33








































+










































U10 + U01

Uk,j−1 + Uk−1,j

U02

Uk−1,j

U14 + U03

Uk,j+1 + Uk−1,j

U20

Uk,j−1

0

U24

Uk,j+1

U30 + U41

Uk,j−1 + Uk+1,j

U42

Uk+1,j

U34 + U43

Uk,j+1 + Uk+1,j










































+ h2








































f11

f12

f13

f21

f22

f23

f31

f32

f33







































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ie:



















−4 1 0 1 0 0 0 0 0
1 −4 1 0 1 0 0 0 0
0 1 −4 0 0 1 0 0 0
1 0 0 −4 1 0 1 0 0
0 1 0 1 −4 1 0 1 0
0 0 1 0 1 −4 0 0 1
0 0 0 1 0 0 −4 1 0
0 0 0 0 1 0 1 −4 1
0 0 0 0 0 1 0 1 −4







































U11

U12

U13

U21

U22

U23

U31

U32

U33




















=




















h2f11 − g10 − g01
h2f12 − g02

h2f13 − g14 − g03
h2f21 − g20

h2f22
h2f23 − g24

h2f31 − g30 − g41
h2f32 − g42

h2f33 − g34 − g43




















,

or A~U = ~f. (5.3)

If m × n ≤ 100 then direct matrix elimination methods can be used. Oth-
erwise iterative methods such as Jacobi, Gauss-Seidel, relaxation methods
should be used to solve for ~U , as discussed in previous chapter 4. Because A
is sparse and diagonally dominant, iterative solutions are ideal here.

However we see in the next section 5.2.1 that when we solve 2-D parabolic
equations (2-D heat or diffusion equations) that the numerical solution re-
quires ‘tweaking’ since the matrix A is no longer tridiagonal for 2-D as it was
for 1-D.

5.2 2-D Heat (or Diffusion) Problems

We consider the 2-D heat equation:

Ut = β(Uxx + Uyy) for 0 ≤ x ≤ a, 0 ≤ y ≤ b and 0 ≤ t ≤ T.

with initial conditions: U(0, x, y) = f(x, y) and boundary conditions: U(t, x, y) =
g(t, x, y) for (x, y) on boundary.
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• If we use explicit forward Euler scheme as we did for the 1-D heat
equation the stability criteria is even stricter than for 1-D:

∆t ≤ ∆x2 +∆y2

8β

→ this is less attractive because the time step is much smaller.

• if we use backward Euler or the Crank-Nicolson methods they are no
longer as attractive because the matrix systems to be solved are much
larger and no longer tridiagonal.

• We will look at an alternative finite difference method specifically tai-
lored to the 2-D heat equation: the alternating direction implicit (ADI)
method.

5.2.1 Alternating Direct/Implicit method for the 2-D
heat equation

Ut = β(Uxx + Uyy)

We let ∆t = T/m, ∆x = a/(n + 1), ∆y = b/(p + 1) tk = k∆t, 0 ≤ k ≤
m, xi = i∆x, 0 ≤ i ≤ n+ 1, yj = j∆y, 0 ≤ j ≤ p+ 1, and:

U(tk, xi, yj) = Uk
ij

The time derivative, Ut, is approximated using a leap-frog step in time about
the mid-point tk+1/2, where tk+1/2 = (tk + tk+1)/2 using a time step of ∆t/2:

∂U
k+1/2
ij

∂t
=

Uk+1
ij − Uk−1

ij

∆t
at time tk+1/2.

The spatial derivatives, Uxx and Uyy, are approximated using central differ-
ences:

∂2Uk
ij

∂x2
=

Uk
i+1,j − 2Uk

ij + Uk
i−1,j

∆x2
︸ ︷︷ ︸

EARLY STEP

at time tk,

∂2Uk+1
ij

∂y2
=

Uk+1
i,j+1 − 2Uk+1

ij + Uk+1
i,j−1

∆y2
at time tk+1.
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This introduces an ‘early’ bias which evaluates Uxx(tk) at an earlier time
than Uyy(tk+1). This bias is compensated by also evaluating Uxx(tk+2) at
tk+2; Uyy(tk+1) again at tk+1 and Ut(tk+3/2) at mid-point between tk+1 and
tk+2:

∂U
k+3/2
ij

∂t
=

Uk+2
ij − Uk+1

ij

∆t
,

∂2Uk+2
ij

∂x2
=

Uk+2
i+1,j − 2Uk+2

ij + Uk+2
i−1,j

∆x2
︸ ︷︷ ︸

LATE STEP

and
∂2Uk+1

ij

∂y2
as before.

The boundary conditions specify Uk
oj, U

k
m+1,j , U

k
io, U

k
i,p+1, and initial condi-

tions specify U0
ij . So we are solving for 1 ≤ k ≤ m, 1 ≤ i ≤ m, 1 ≤ j ≤ p.

ie. for each interior point at time tk.
We solve the problem for both time steps tk+1 and tk+2 at the same time
using early and late definitions. If we let sx = β∆t/∆x2, sy = β∆t/∆y2

then Ut = β(Uxx + Uyy) becomes:
Early step:

Uk+1
ij (1 + 2sy)− sy[U

k+1
i,j+1 + Uk+1

i,j−1] = Uk
ij(1− 2sx) + sx[U

k
i+1,j + Uk

i−1,j ]

This is solved first for ith row of Uk+1 matrix, for 1 ≤ i ≤ n.

Late step:

Uk+2
ij (1 + 2sx)− sx[U

k+2
i+1,j + Uk+2

i−1,j ] = Uk+1
ij (1− 2sy) + sy[U

k+1
i,j+1 + Uk+1

i,j−1]

This is solved for jth column of Uk+2 matrix, for 1 ≤ j ≤ p.
These are solved using LU decomposition. (For more details see Schilling
and Harris, p. 445).

5.3 Cylindrical and spherical polar co-ordinates

• Spherical and cylindrical symmetry in problems are often exploited to
reduce 2-D → 1-D or 3-D → 1-D.
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3-D Cylindrical Co-ordinates

x = r cos θ
y = r sin θ
z = z
⇒ r =

√
x2 + y2

θ = arctan( y
x
)

Figure 5.1: 3-D Cylindrical Co-ordinates

3-D Spherical Polar Co-ordinates

x = r sin θ cosφ
y = r sin θ sinφ
z = r cos θ

Figure 5.2: 3-D Spherical Polar Co-ordinates
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2-D Polar Co-ordinates

x = r cosφ
y = r sinφ
⇒ r =

√
x2 + y2

φ = arctan( y
x
).

∂

∂x
=

∂r

∂x

∂

∂r
+

∂φ

∂x

∂

∂φ
= cosφ

∂

∂r
− sinφ

r

∂

∂φ
∂

∂y
=

∂r

∂y

∂

∂r
+

∂φ

∂y

∂

∂φ
= sinφ

∂

∂r
+

cosφ

r

∂

∂φ

5.3.1 Example: Temperature around a nuclear waste
rod

The matlab code for this example is available from here.

&%
'$6

y

- x�
�
�
��

r

r = a

Nuclear rod buried in ground

We consider the temperature increase due to storage of nuclear rods which
release heat due to radioactive decay:

1

κ

∂T

∂t
(r, t)−▽2T (r, t)

︸ ︷︷ ︸

2 -D heat equation

= S(r, t)
︸ ︷︷ ︸

source term

where the source term due to the radioactive decay of rod is given by:

S(r, t) =

{

Trode
−t/τ0/a2 for r ≤ a

0 elsewhere.

where a = 25cm, κ = 2 × 107cm2/year, Trod = 1K, τ0 = 100years, rc =
100cm, TE = 300K, 0 < r < 100cm and 0 < t < 100years. Initially
T (r, t = 0) = 300K.

http://www.uq.edu.au/~uqlkett1/Louise_Olsen_Teaching_Info/MATH3203LectureNotes/NuclearWaste.m
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Because the problem has circular symmetry (ie. no φ dependence) ⇒ 2-D
problem in (x, y) reduced to 1-D problem in r. ▽2T = Txx + Tyy is 2-D in
Cartesian co-ordinates. However if we choose to use polar co-ordinates then
the temperature, T (r, t) is a function of r only because the rod circularly
symmetric and there is no φ dependence. This reduces the original 2-D
problem to 1-D!
How do we evaluate ▽2T in polar co-ordinates?

Txx =
∂2T

∂x2
= (cosφ

∂

∂r
− sinφ

r

∂

∂φ
)(cosφ

∂T

∂r
− sinφ

r

∂T

∂φ
)

= cos2 φTrr −
2 sinφ cosφ

r
Trφ +

sin2 φ

r
Tr +

2 cosφ sinφ

r
Tφ +

sin2 φ

r
Tφφ

Tyy = (sinφ
∂

∂r
+

cosφ

r

∂

∂φ
)(sinφ

∂T

∂r
+

cosφ

r

∂T

∂φ
)

= sin2 φTrr +
2 cosφ sin θ

r
Trφ −

2 cosφ sinφ

r2
Tφ +

cos2 φ

r
Tr +

cos2 φ

r2
Tφφ

and Txx + Tyy = Trr +
1

r
Tr +

1

r

2

Tφφ

using cos2 φ+ sin2 φ = 1.

Since the temperature T (r, t) has no φ dependence then Tφφ = 0 and we are
solving the 1-D heat equation in polar co-ordinates:

1

K

∂T

∂t
− ∂2T

∂r2
− 1

r

∂T

∂r
= S(r, t)

We know that in the steady state solution eventually the nuclear rod is no
longer radioactive and stops releasing heat: S(r, t) → 0 as t → ∞, and
further enough away from the rod the temperature equals the environment
temperature, T (r = rc, t) = 300K. So the solution should approach the
environmental temperature T (r, t) = 300K once rod has finished radioactive
decaying.
We use finite differences to solve:

1

K

∂T

∂t
− ∂2T

∂r2
− 1

r

∂T

∂r
= S(r, t) (5.4)

We observe that there is a singularity at r = 0 in the above equation where
special care needs to be taken so that the numerical solution is stable.
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Initial conditions T (r, 0) = 300K.
Neumann boundary conditions at r = 0 (temperature cannot flow into r = 0
region)

∂T

∂r
(r = 0, t) = 0

Dirichlet boundary conditions at r = rc

T (r = rc, t) = 300K

Again we discretise space and time: ∆r = rc/(n + 1), ∆t = Tf/m, rj =
j∆r, 0 ≤ j ≤ n + 1, tk = k∆t, 0 ≤ k ≤ m, T (rj, tk) = T k

j , and S(rj, tk) =
Sk
j .

Discrete Neumann boundary conditions at r = 0 become:

∂T k
j

∂t
(r = 0, t) =

∂T k
0

∂t
= 0 ≈ T k

1 − T k
0

∆t
⇒ T k

0 ≈ T k
1

Discrete Dirichlet boundary conditions at r = rc become:

T k
j (r = rc, t) = T k

n+1 = 300

We will use the backward Euler method (implicit) to solve the PDE. This
means evaluating the spatial derivatives in r at the future time step tk+1:

Tt(tk+1, rj) =
T k+1
j − T k

j

∆t

Trr(tk+1, rj) =
T k+1
j+1 − 2T k+1

j + T k+1
j−1

∆r2
(centred difference at tk+1)

Tr(tk+1, rj) =
T k+1
j+1 − T k+1

j−1

2∆r
(leap-frog in space)

Using rj = j∆r our discretised PDE 5.4 becomes:

1

κ
Tt − Trr −

1

r
Tr = S(r, t)

1

κ∆t
[T k+1

j − T k
j ]

︸ ︷︷ ︸

Tt/κ

− [
T k+1
j+1 − 2T k+1

j + T k+1
j−1

∆r2
]

︸ ︷︷ ︸

Trr

− 1

j∆r
[
T k+1
j+1 − T k+1

j−1

2∆r
]

︸ ︷︷ ︸

Tr/r

= Sk
j

We let s = κ∆t/∆r2 and we arrive at:

T k+1
j+1 [−s− s

2j
] + T k+1

j−1 [−s+
s

2j
] + T k+1

j [1 + 2s] = T k
j + Sk

j κ∆t (5.5)

This is a tridiagonal matrix for 1 ≤ j ≤ n.



5.3. CYLINDRICAL AND SPHERICAL POLAR CO-ORDINATES 43

Numerical solution of the 1-D heat equation in polar co-ordinates
using the Backward Euler method

For n = 3:

r0 = 0 r1 r2 r3 rn+1 = rc = r4

� -

∆r

The boundary conditions give T k
0 ≈ T k

1 using ∂T
∂r
(r = 0, t) = 0) and T k

4 =
300K using (T (r = rc, t) = 300) and the initial conditions are T 0

j = 300K.

We solve equation 5.5 for T k
1 , T

k
2 , T

k
3 at each time step (tk):







1 + 2s (−s− s
2j
) 0

(−s+ s
2j
) 1 + 2s (−s− s

2j
)

0 (−s+ s
2j
) 1 + 2s












T k+1
1

T k+1
2

T k+1
3




+







(−s+ s
2j
)T k+1

0

0
(−s− s

2j
)T k+1

4







=






T k
1

T k
2

T k
3




+ κ∆t






Sk
1

Sk
2

Sk
3






Using the boundary conditions: T k+1
0 ≈ T k+1

1 , T k+1
4 = 300K







(1 + s+ s
2j
) (−s− s

2j
) 0

(−s+ s
2j
) (1 + 2s) (−s− s

2j
)

0 (−s+ s
2j
) (1 + 2s)












T k+1
1

T k+1
2

T k+1
3






=






T k
1

T k
2

T k
3




+ κ∆t






Sk
1

Sk
2

Sk
3




−






0
0

(−s− s
2j
)T k+1

4






⇒






(1 + s+ s
2
) (−s− s

2
) 0

(−s+ s
4
) (1 + 2s) (−s− s

4
)

0 (−s+ s
6
) (1 + 2s)











T k+1
1

T k+1
2

T k+1
3






=






T k
1

T k
2

T k
3




+ κ∆t






Sk
1

Sk
2

Sk
3




−






0
0

(−s− s
6
)300






Or to simplify we are solving the following matrix equation for the vector of
unknown temperatures ~T k+1:

A~T k+1 = ~T k + κ∆t~Sk +~b
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Download the matlab code here and check that solution for T → 300K as
t → ∞ (steady state approaches environment temperature, 300K).
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Figure 5.3: Initial conditions in (a) and matlab solution using Backward
Euler method for temperature distribution near nuclear rod at different time
intervals in (b)

Figure 5.3 shows the initial conditions and temperature distribution near the
nuclear rod at different time intervals.

http://www.uq.edu.au/~uqlkett1/Louise_Olsen_Teaching_Info/MATH3203LectureNotes/NuclearWaste.m
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Chapter 6

Analytical solutions to the 1-D
Wave equation

6.1 1-D Wave equation

Utt − c2Uxx = 0

or (
∂

∂t
− c

∂

∂x
)(

∂

∂t
+ c

∂

∂x
)U = 0 (6.1)

This is a hyperbolic equation since A = 1, C = −c2, B = 0 so that AC < B2

6.2 d’Alembert’s solution

We introduce a change of variables:
ξ = x+ ct
η = x− ct
Then:

∂

∂ξ
=

∂x

∂ξ

∂

∂x
+

∂t

∂ξ

∂

∂t
=

∂

∂x
+

1

c

∂

∂t
∂

∂η
=

∂x

∂η

∂

∂x
+

∂t

∂η

∂

∂t
=

∂

∂x
− 1

c

∂

∂t

So equation 6.1 becomes:

⇒ −c
∂

∂η
(c

∂

∂ξ
)U = −c2Uξη = 0
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⇒ U(ξ, η) = g(ξ) + f(η)

= g(x+ ct) + f(x− ct)

• g(x+ ct) defines waves that travel in left direction with speed c

• f(x− ct) defines waves that travel in right direction with speed c.

• The pulses move without dispersion and the initial pulse breaks into a
left and right pulse.

6.3 Separation of variables

This time we will derive the analytical solution using the separation of vari-
ables technique as we did for the 1-D heat equation in section 2.1. We want
to solve the 1-D heat equation:

Utt = c2Uxx (6.2)

with periodic boundary conditions U(0, t) = 0 = U(L, t)

Again we assume U(x, t) = X(x)T (t) then substitute into equation 6.2:

X(x)T ′′(t) = c2X ′′(x)T (t)

then divide by XT ⇒
T ′′

T
︸︷︷︸

function of t only

= c2
X ′′

X
︸ ︷︷ ︸

function of x only

= −ω2 (constant)

Solving X ′′ = −k2X, where k = ω/c for X(x) gives:

X = A sin(kx) + B cos(kx)

The boundary conditions give X(0) = B = 0 and X(L) = A sin kL = 0 ⇒
k = kn = nπ/L, n = 0, 1, . . .. Thus the general solution for X(x) is:

X(x) =
∑

n

an sin(
nπx

L
)

Similarly if we solve T ′′ = −ω2
nT (where ωn = ckn) we find the general

solution:

T (t) = C sin(ωnt) +D cos(ωnt)
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. So the solution for U(x, t) is:

U(x, t) = X(x)T (t)

=
∑

n

[an sin(ωnt) + bn cos(ωnt)] sin(knx)

where an, bn are given by initial conditions:

U(x, 0) = U0(x),
∂U

∂t
(x, 0) = V0(x)

⇒ U0 =
∑

n

bn sin(knx) V0 =
∑

n

anωn sin(knx)

using orthogonality of sine functions:
∫ L
0 sin(kmx) sin(knx)dx = δnm ⇒

bm =
2

L

∫ L

0
U0(x) sin(kmx)dx

am =
2

wmL

∫ L

0
V0(x) sin(kmx)dx



Chapter 7

Flux conservative problems

7.1 Flux Conservative Equation

A large class of PDEs can be cast into the form of a flux conservative equation:

∂~U

∂t
=

−∂f

∂x
(~U, ~Ux, ~Uxx, ...)

Example: flux conservative form for the wave equation

We consider the 1-D wave equation Utt = c2Uxx. If we let:

~w =

(

r
s

)

, where r = c
∂U

∂x
, and s =

∂U

∂t
.

This means that:

∂ ~w

∂t
=

(
∂r
∂t
∂s
∂t

)

=

(

c ∂s
∂x

c ∂r
∂x

)

or
∂ ~w

∂t
= − ∂

∂x

(

0 −c
−c 0

)

~w = − ∂

∂x
f(~w)

7.2 Stability analysis of numerical solutions

of the first order flux conservative or 1-D

advection equation

∂U

∂t
= −c

∂U

∂x
(7.1)
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We introduce a change of variable ξ = x− ct and:

∂

∂t
=

∂ξ

∂t

∂

∂ξ
= −c

∂

∂ξ
,

∂

∂x
=

∂ξ

∂x

∂

∂ξ
=

∂

∂ξ

We see that equation 7.1 holds: −c∂U
∂ξ

= −c∂U
∂ξ

√
. So, U(x, t) = U(ξ) =

f(x − ct) is the analytic general solution of equation 7.1, which is a wave
propagating in the right (positive x) direction.

We study the stability of different finite difference schemes in solving the flux
conservative or 1-D advection equation:

Ut = −cUx, x0 ≤ x ≤ x1, t0 ≤ t ≤ T

Again we discretise problem ∆x = x1−x0

n+1
, ∆t = T−t0

m
and let xj = x0 +

j∆x, j = 0, . . . , n+ 1, tk = t0 + k∆t, k = 0, . . . ,m, and Uk
j = U(xj, tk).

7.3 Forward Time Centred Space (FTCS)

Forward Euler method in time:

∂Uk
j

∂t
=

Uk+1
j − Uk

j

∆t
+O(∆t)

Leap-frog or centred difference in space:

∂Uk
j

∂x
=

Uk
j+1 − Uk

j−1

2∆x
+O(∆x2)

Using FTCS method: Ut = −cUx gives:

Uk+1
j = Uk

j − c∆t

2∆x
[Uk

j+1 − Uk
j−1] (7.2)

7.3.1 von Neumann stability analysis of FTCS method

FTCS is unstable! Why?
We assume that independent solutions (eigenmodes) of equation 7.2 (or any
difference equation) are of the form:

Uk
j = ξkeipj∆x (7.3)

where p is a real spatial wavenumber and ξ = ξ(p) is a complex number that
depends on p.
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Equation 7.3 shows that the time dependence of a single eigenmode Uk
j is

only through successive powers of ξ(ξk). ⇒ Difference equations are unstable
if |ξ(p)| > 1 for some p. ξ is called the amplification factor.
To find ξ(p) for FTCS method substitute Uk

j = ξkeipj∆x into equation 7.2:

ξk+1eipj∆x = ξkeipj∆x






1− c∆t

2∆x
(eip∆x − e−ip∆x)
︸ ︷︷ ︸

2i sin(p∆x)







⇒ ξ(p) = 1− ic∆t

∆x
sin(p∆x)

and |ξ(p)| ≥ 1 ∀ p ⇒ FTCS scheme is unconditionally unstable for solving
Ut = −cUx.

7.4 Lax Method

Again we are solving the flux conservative equation: Ut = −cUx. The in-
stability in the FTCS method is removed in the Lax method by using the

average for Uk
j =

Uk
j+1+Uk

j−1

2
instead of Uk

j in approximating Ut:

∂Uk
j

∂t
=

Uk+1
j − 1

2
[Uk

j+1 + Uk
j−1]

∆t

and centred difference again for Ux. Then Ut = −cUx becomes:

Uk+1
j =

1

2
[Uk

j+1 + Uk
j−1]−

c∆t

2∆x
[Uk

j+1 − Uk
j−1] (7.4)

7.4.1 von Neumann Stability Analysis of Lax Method

The Lax method is conditionally stable. To see substitute Uk
j = ξkeipj∆x into

equation 7.4:

ξk+1eipj∆x = ξkeipj∆x








1

2
[eip∆x + e−ip∆x]

︸ ︷︷ ︸

cos(p∆x)

− c∆t

2∆x
(eip∆x − e−ip∆x)
︸ ︷︷ ︸

2i sin(p∆x)








⇒ ξ = cos(p∆x)− i
c∆t

∆x
sin(p∆x)
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Lax method stable when |ξ|2 ≤ 1 :

⇒ | cos2(p∆x) +
c2∆t2

∆x2
sin2(p∆x)| ≤ 1

or |1− (1− c2∆t2

∆x2
) sin2(p∆x)| ≤ 1

⇒ 1− c2∆t2

∆x2
≥ 0

or
c2∆t2

∆x2
≤ 1

or ∆t ≤ ∆x

c
︸ ︷︷ ︸

COURANT CONDITION

(c > 0)

7.5 Courant Condition

• The Courant condition means Lax method is stable when ∆t ≤ ∆x/c

• The physical meaning is that value Uk+1
j is computed from information

at points j − 1 and j + 1 at time k in a stable scheme, where the
wave speed is less that the mesh spacing divided by time. ie. in a
continuum wave equation information propagates at maximum speed
c, so Lax method is stable when ∆x

∆t
≥ c. This is shown in the plot below:

-

6

s s s s s
s s s s s
s s s s s

Uk
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• Unstable schemes arise when ∆x
∆t

≤ c ie. when the time step ∆t be-

comes too large because Uk+1
j requires information from points outside

[Uk
j−1, U

k
j+1] as shown in the plot below. (see Press et al, Numerical

Recipes, p. 825-830)

-
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7.6 von Neumann Stability Analysis ForWave

Equation

Utt = c2Uxx

let ~w =

(

r
s

)

=

(

cUx

Ut

)

We saw earlier that:

∂ ~w

∂t
=

(
∂r
∂t
∂s
∂t

)

=

(

c ∂s
∂x

c ∂r
∂x

)

= c
∂

∂x

(

s
r

)

7.6.1 Lax method

We will solve the wave equation using the Lax method:

rt = csx becomes:

rk+1
j =

1

2
[rkj−1 + rkj+1] +

c∆t

2∆x
(skj+1 − skj−1) (7.5)
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st = crx becomes:

sk+1
j =

1

2
[skj−1 + skj+1] +

c∆t

2∆x
(rkj+1 − rkj−1) (7.6)

where rkj = r(xj , tk) and skj = s(xj, tk)

For von Neumann stability analysis assume eigen-modes for rkj and skj are of
the form:

(

rkj
skj

)

= ξkeipj∆x

(

r0j
s0j

)

⇒ solutions stable if |ξ| ≤ 1

Equation 7.5 and 7.6 give:

(

ξ − cos(p∆x) − ic∆t
∆x

sin(p∆x)
− ic∆t

∆x
sin(p∆x) ξ − cos(p∆x)

)(

r0

s0

)

=

(

0
0

)

• This has a solution only if determinant = 0.

• This gives ξ = cos(p∆x)± i c∆t
∆x

sin(p∆x).

• This is stable if |ξ|2 ≤ 1 which gives same Courant condition ∆t ≤ ∆x
c
.

7.7 Other sources of error

7.7.1 Phase Errors (through dispersion)

• Fourier analysis of the Lax method shows how phase errors arise.

• The Fourier mode U(x, t) = ei(px+ωt) is an exact solution of Ut = −cUx

if ω and p satisfy the dispersion relation ω = −cp, then U(x, t) =
eip(x−ct) = f(x− ct) gives the exact solution of Ut = −cUx.

• ie. this mode is completely undamped and the amplitude is constant (no
dispersion) for the numerical solution using a time step which satisifes
this dispersion relation.

• We will show the effects of phase errors by studying the numerical
solution of the 1-D advection equation using different time steps which
lead to dispersion being absent or present in section 7.7.2.
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Dispersion relation for the Lax Method

The dispersion relation is only satisfied if: ∆t = ∆x
c
.

Why? Consider Uk
j = ξkeipj∆x

In section 7.4.1 we found:

ξ = cos(p∆x)− i
c∆t

∆x
sin(p∆x)

= e−ip∆x + i(1− c∆t

∆x
) sin(p∆x)

If we let ∆t = ∆x
c

⇒ ξ = e−ip∆x and Uk
j = ξkeipj∆x = eip(−k∆x+j∆x)

When we substitute xj = j∆x, tk = k∆t and the dipsersion relation ∆x =
c∆t then: Uk

j = eip(−ck∆t+j∆x) = eip(xj−ctk) = f(xj − ctk)
︸ ︷︷ ︸

exact solution

.

Thus the Lax method has no dispersion present when the time step satisfies
the dispersion relation exactly: ∆t = ∆x

c
. We will show this in the next

section.

7.7.2 Dispersion in the numerical solution of the 1-D
advection equation using the Lax method

The matlab code can be downloaded from here.

Use Lax Method to solve:

Ut + Ux = 0, 0 ≤ x ≤ 2 ≈ ∞, 0 ≤ t ≤ 1

initial conditions :

U(x, 0) =

{

1, 0.2 ≤ x ≤ 0.4
0, otherwise

= U0(x)

boundary conditions :

U(0, t) = U(2, t) = 0

http://www.uq.edu.au/~uqlkett1/Louise_Olsen_Teaching_Info/MATH3203LectureNotes/Lax_Flux.m
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Exact solution

-

t = 0
initial pulse

t = 1
final pulse

0.2 0.4 1.2 1.4

-

U(x, t) = U0(x− ct)

= U0(x− t) (c = 1)

In the next section we compare the above exact solution with the numerical
solution using the Lax method with different time steps:

• ∆t = ∆x
c

⇒ no dispersion matches analytic solution.

• ∆t = ∆x
2c

⇒ dispersion present but pulse matches speed of wave.

• ∆t = 1.001∆x
c

⇒ courant condition not met → unstable!

Lax Method for Ut + Ux = 0

Equation 7.4 gives: Uk+1
j = 1

2
[Uk

j+1 + Uk
j−1]− c∆t

2∆x
[Uk

j+1 − Uk
j−1]

let s = c∆t
∆x

⇒ Uk+1
j = 1

2
(1− s)Uk

j+1 + Uk
j−1 +

1
2
(1 + s)Uk

j−1

Again for simplicity we only consider 4 elements in x:

x0 x1 x2 x3 x4

Solve for Uk+1
j for 0 ≤ k ≤ m, 1 ≤ j ≤ 3 with boundary conditions : Uk

0 = 0,
Uk
4 = 0. We have:






Uk+1
1

Uk+1
2

Uk+1
3




 =






0 1
2
(1− s) 0

1
2
(1 + s) 0 1

2
(1− s)

0 1
2
(1 + s) 0











Uk
1

Uk
2

Uk
3




+






1
2
(1 + s)Uk

0

0
1
2
(1− s)Uk

4






or ~Uk+1 = A~Uk +~b
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Dispersion means the initial pulse changes shape (unlike analytical solution)
because wave components with different frequencies travel at different speeds.
Downlad the matlab code here to see how the numerical solution changes for
different time steps depending on whether or not the scheme is stable or
dispersion is present. Figure 2.1 shows how the solution changes for different
time steps depending on whether or not the scheme is stable or dispersion is
present.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

Final solution at t=1

x

U

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

Final solution at t=1

x

U

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.2

0.4

0.6

0.8

1

Final solution at t=1

x
U

Figure 7.1: Solution at t = 1 using the Lax method with different time
steps, (a) ∆t = ∆x/2c where dispersion is present but the pulse matches
the analytical solution for the speed of the wave, (b) ∆t = ∆x/c where
no dispersion is present and numerical solution matches analytical solution
exactly, and (c) ∆t = 1.001∆x/c where the Courant condition is not met
and solution is becoming unstable.

7.7.3 Error due to nonlinear terms

Example

Shock wave equation:

Ut + UUx
︸ ︷︷ ︸

nonlinear term

= 0

• nonlinear term causes wave profile to steepen resulting in a shock.

• schemes stable for linear problems can become unstable.

• this will be discussed later in chapter 11

http://www.uq.edu.au/~uqlkett1/Louise_Olsen_Teaching_Info/MATH3203LectureNotes/Lax_Flux.m
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7.7.4 Aliasing error

Example

-1.5

-1

-0.5

 0

 0.5

 1

 0  1  2  3  4  5  6

x

∆ x

λ1

λ2

Figure 7.2: Aliasing error occurs when the mesh spacing ∆x is too large to
represent the smallest wavelength λ1 and misinterprets it as a longer wave-
length oscillation λ2

Alising error occurs when a short wavelength (λ1) is not represented well by
the mesh-spacing (∆x), and may be misinterpreted as a longer wavelength
oscillation (λ2).



Chapter 8

Numerical Solution of 1-D and
2-D Wave Equation

8.1 Explicit Central Difference for 1-D Wave

Equation

Utt = c2Uxx, 0 ≤ t ≤ T, 0 ≤ x ≤ a

Discretise: ∆t = T
m
, ∆x = a

n+1
,

tk = k∆t, 0 ≤ k ≤ m, xj = j∆x and 0 ≤ j ≤ n+ 1.

8.1.1 Example: plucking a string

The matlab code can be downloaded from here.

0 0.8a a

���������������������

Q
Q

Q
Q

Q
Q

QQ

A string is initially plucked or lifted from rest:

59

http://www.uq.edu.au/~uqlkett1/Louise_Olsen_Teaching_Info/MATH3203LectureNotes/Wave1D.m
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boundary conditions: U(0, t) = 0, U(a, t) = 0 or Uk
0 = 0, Uk

n+1 = 0
initial conditions: string is “plucked” or lifted 1mm at x = 0.8a:

U(x, t = 0) = f(x) =

{
1.25x
a

, for x ≤ 0.8a
5(1− x

a
), for x > 0.8a

Plucked string is released from rest:

∂U

∂t
(x, 0) = g(x) = 0

U(x, t = 0) = f(x) ⇒ U0
j = fj = f(xj)

∂U

∂t
(x, t = 0) = g(x) ⇒ ∂U0

j

∂t
≈ U1

j − U−1
j

2∆t
︸ ︷︷ ︸

leap-frog in time

= gj = g(xj)

We can solve for ‘ghost’ point U−1
j :

U−
j 1 = U1

j − 2∆tg(xj)

We approximate Utt and Uxx using central differences:

Utt =
Uk+1
j − 2Uk

j + Uk−1
j

∆t2

Uxx =
Uk
j+1 − 2Uk

j + Uk
j−1

∆x2

Using Utt = c2Uxx and s = c2∆t2

∆x2 , we solve for Uk+1
j at time step k + 1:

Uk+1
j = −Uk−1

j
︸ ︷︷ ︸

solution at tk−1

+ 2Uk
j (1− s) + s(Uk

j+1 + Uk
j−1)

︸ ︷︷ ︸

solution at tk

In order to find U2
j we need to know U0

j and U1
j .

We consider n = 3:

x0 x1 x2 x3 x4
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boundary conditions: Uk
0 = 0, Uk

4 = 0
initial conditions: U0

j = fj, U
−1
j = U1

j − 2∆tg(xj) = U1
j , since g(xj) = 0.

First find ~U1 =






U1
1

U1
2

U1
3






~U1 =






U1
1

U1
2

U1
3




 =






2(1− s) s 0
s 2(1− s) s
0 s 2(1− s)






︸ ︷︷ ︸

A






U0
1

U0
2

U0
3




+ s






U0
0

0
U0
4






︸ ︷︷ ︸

b

−






U−1
1

U−1
2

U−1
3






Use U0
j = fj and U−1

j = U1
j − 2∆tgj

~U1 =






U1
1

U1
2

U1
3




 =

1

2






2(1− s) s 0
s 2(1− s) s
0 s 2(1− s)











f1
f2
f3




+

s

2






U0
0

0
U0
4




+∆t






g1
g2
g3






~U1 =
1

2
A~U0 +

1

2
~b+ ~d

For this example, U0
0 = 0, U0

4 = 0 and:

∂U0
j

∂t
(x, t = 0) = g(xj) = 0 ⇒ ~d = ~0

for ~U2, . . . , ~Um we have:

Uk+1
j = 2Uk

j (1− s) + s(Uk
j+1 + Uk

j−1)− Uk−1
j

for 1 ≤ k ≤ m:

~Uk+1 =






Uk+1
1

Uk+1
2

Uk+1
3




 =






2(1− s) s 0
s 2(1− s) s
0 s 2(1− s)






︸ ︷︷ ︸

A






Uk
1

Uk
2

Uk
3




+ s






Uk
0

0
Uk
4






︸ ︷︷ ︸

b

−






Uk−1
1

Uk−1
2

Uk−1
3






~Uk+1 = A~Uk +~b− ~Uk−1

The matlab code can be downloaded from here.

In our example Uk
0 = 0, Uk

4 = 0
~b = ~0, since Uk

0 = 0 = Uk
4

At fixed boundaries U(0, t) = 0 = U(a, t) ⇒ wave is reflected. We plot the
numerical solution in figure 8.1.

http://www.uq.edu.au/~uqlkett1/Louise_Olsen_Teaching_Info/MATH3203LectureNotes/Wave1D.m
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Figure 8.1: Initial conditions in (a) and matlab solution using explicit central
difference method for 1D wave equation in (b)

We can compare with D’Alembert’s solution which gives:

U(x, t) =
1

2
[f(x− ct) + f(x+ ct)] since Ut(x, 0) = 0

where U(x, 0) = f(x) (initial conditions) for −∞ < x < ∞

What if we want to solve the wave equation for 0 ≤ x ≤ a, with fixed bound-
ary condition U(t, 0) = 0 = U(t, a)? We can extend D’Alembert’s general so-
lution for Utt = c2Uxx with initial conditions:U(x, 0) = f(x) Ut(x, 0) = g(x):

U(t, x) =
f(x+ ct) + f(x− ct)

2
+

1

2c

∫ x+ct

x−ct
g(z)dz

for −∞ ≤ x ≤ ∞

In our example:

Ut(x, 0) = 0, U(x, 0) = f(x) =

{
1.25x
a

, 0 ≤ x ≤ 0.8a
5(1− x

a
), for x ≥ 0.8a

0 ≤ x ≤ a

with fixed boundary conditions:
The boundary condition U(0, t) = 0 is equivalent to f and g being odd



8.1. EXPLICIT CENTRAL DIFFERENCE FOR 1-DWAVE EQUATION63

functions:

U(0, t) = 0 ⇒ f(−x) = −f(x)

g(−x) = −g(x)

(f and g are odd functions)

The boundary condition U(a, t) = 0 is equivalent to f and g being periodic
with period 2a:

U(a, t) = 0 ⇒ f(x+ 2a) = f(x)

g(x+ 2a) = g(x)

(f and g are periodic with period 2a)

Since Ut(x, 0) = g(x) = 0 the analytical solution for our example:

U(t, x) =
f(x+ ct) + f(x− ct)

2

and we can compare the analytical solution with the numerical solution in
figure 8.2.

Figure 8.2: D’Alembert’s solution in (a) and error using numerical matlab
solution using explicit central difference method for 1D wave equation in (b)

8.1.2 1-D Wave Equation with Friction

The matlab code can be downloaded from here.

http://www.uq.edu.au/~uqlkett1/Louise_Olsen_Teaching_Info/MATH3203LectureNotes/Wave1DFriction.m
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We consider friction due to viscosity of medium and density of string. Sup-
pose we are solving:

Ü + 2κ U̇ = c2Uxx, 0 ≤ x ≤ a = 50, 0 ≤ t ≤ T = 20

The friction term κ opposes motion of string and means that eventually
vibrations decay with time.
Suppose string is initially plucked in 2 places:

0 a0.1a 0.3a 0.7a 0.9a

�
�
�

@
@

@

�
�
�

@
@

@

We have initial conditions:

U(x, 0) =







0, 0 ≤ x ≤ 0.1a
5(10x− a), 0.1a ≤ x ≤ 0.2a

5(−10x+ 3a), 0.2a ≤ x ≤ 0.3a
0, 0.3a ≤ x ≤ 0.7a

5(10x− 7a), 0.7a ≤ x ≤ 0.8a
5(−10x+ 9a), 0.8a ≤ x ≤ 0.9a

0, x ≥ 0.9a

Ut(x, 0) = 0

and boundary conditions: U(x, 0) = 0, U(x, a) = 0.
Again we use central difference for Uxx and Utt as in section 8.1.1.
We use a leap-frog step for Ut

∂Uk
j

∂t
=

Uk+1
j − Uk−1

j

2∆t

Now we substitute difference approximations into Utt + 2κUt = c2Uxx

Uk+1
j − 2Uk

j + Uk−1
j

∆t2
+ κ

Uk+1
j − Uk−1

j

∆t
=

c2(Uk
j+1 − 2Uk

j + Uk
j−1)

∆x2
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let s = c2∆t2

∆x2

Rearranging for Uk+1
j gives:

Uk+1
j =

1

1 + κ∆t

{

2(1− s)Uk
j − (1− κ∆t)Uk−1

j + s(Uk
j+1 + Uk

j−1)
}

Special care is again needed to solve for U1
j which needs U0

j and the ghost

point, U−1
j . To find U−1

j we use initial condition:

∂U

∂t
(x, t = 0) =

∂U0
j

∂t
= 0 =

U1
j − U−1

j

2∆t
or U−1

j = U1
j (since Ut(x, 0) = 0)

We evaluate U1
j :

U1
j =

1

1 + κ∆t







2(1− s)U0
j − (1− κ∆t)U−1

j
︸︷︷︸

=U1
j

+s(U0
j+1 − U0

j−1)







⇒ 2

1 + κ∆t
U1
j =

1

1 + κ∆t

{

2(1− s)U0
j + s(U0

j+1 − U0
j−1)

}

⇒ U1
j =

1

2

{

2(1− s)U0
j + s(U0

j+1 − U0
j−1)

}

Example n = 3

x0 = 0 x1 x2 x3 x4 = a

Uk
0 = 0 = U(0, t), Uk

n+1 = Uk
4 = U(a, t)

Again we solve for time step k = 1, ~U1 first:

~U1 =






U1
1

U1
2

U1
3




 =

1

2






2(1− s) s 0
s 2(1− s) s
0 s 2(1− s)











U0
1

U0
2

U0
3




+

s

2






U0
0

0
U0
4






and the solution for time steps, k ≥ 1, ~Uk+1 are given by:
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~Uk+1 =






Uk+1
1

Uk+1
2

Uk+1
3




 =

1

1 + κ∆t






2(1− s) s 0
s 2(1− s) s
0 s 2(1− s)






︸ ︷︷ ︸

A






Uk
1

Uk
2

Uk
3






+
s

1 + κ∆t






Uk
0

0
Uk
4






︸ ︷︷ ︸

b

− 1− κ∆t

1 + κ∆t
︸ ︷︷ ︸

e






Uk−1
1

Uk−1
2

Uk−1
3






= A~Uk +~b− e~Uk−1

The numerical solution is plotted in figure 8.3 below.
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Figure 8.3: Initial conditions in (a) and matlab solution using explicit central
difference method for 1D wave equation with friction in (b)

The matlab code can be downloaded from here.

8.2 2-D Wave Equation

Utt = β(Uxx + Uyy), 0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ t ≤ T

http://www.uq.edu.au/~uqlkett1/Louise_Olsen_Teaching_Info/MATH3203LectureNotes/Wave1DFriction.m
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8.2.1 Example: vibrations of a thin elastic membrane
fixed at its walls

We discretise in x and y-directions:

x0 x1 x2 x3 . . . xn xn+1 = a
y0

y1

y2

y3

...

yp
yp+1 = b

We discretise: ∆t = T
m
, ∆x = a

n+1
, ∆y = b

p+1
, tk = k∆t, xi = i∆x, yj =

j∆y0 ≤ k ≤ m, 0 ≤ i ≤ n+ 1, 0 ≤ j ≤ p+ 1, and let Uk
ij = U(tk, xi, yj)

Suppose we solve for n = 3 and p = 3 and have Dirichlet boundary conditions:
U(0, y, t) = 0 = Uk

oj, U(a, y, t) = 0 = Uk
n+1,j = Uk

4j , U(x, 0, t) = 0 =
Uk
i0, U(x, b, t) = 0 = Uk

i,p+1 = Uk
i4

and initial conditions:
U(x, y, 0) = f(x, y) = fij Ut(x, y, 0) = g(x, y) = gij.

Since we have Dirichlet boundary conditions: the outer boundaries of the
region we are solving for are known: Uk

0,j , U
k
n+1,j , U

k
i,0, U

k
i,p+1, and we need to

find the interior values: Uk
i,j for 1 ≤ i ≤ n and 1 ≤ j ≤ p.
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x0 x1 x2 x3 x4 = xn+1 = a
y0

y1

y2

y3

y4 = yp+1 = b

h h h

h h h

h h h

U11 U21 U31

U12 U22 U32

U13 U23 U33

We will use the 2-D Central Difference Method

Utt =
Uk+1
ij − 2Uk

ij + Uk−1
ij

∆t2
,

Uxx =
Uk
i+!,j − 2Uk

ij + Uk
i−1,j

∆x2
,

Uyy =
Uk
i,j+1 − 2Uk

ij + Uk
i,j+1

∆y2

We let sx = βt2

∆x2 , sy = βt2

∆y2
and substitute the central difference approxima-

tions into our PDE, Utt = β(Uxx + Uyy) we solve for Uk+1
ij :

Uk+1
ij = 2Uk

ij(1− sx − sy)− Uk−1
ij + sx(U

k
i+1,j + Uk

i−1,j) + sy(U
k
i,j+1 + Uk

i,j−1)

computing ~Uk+1 uses the solution at ~Uk and ~Uk−1.
For first time step U1

ij needs U0
ij and U−1

ij . Again we need to use the initial

conditions to find the ghost point, U−1
ij :

∂U0
ij

∂t
= Ut(x, y, 0) =

U1
ij − U−1

ij

2∆t
= g(xi, yj) = gij ⇒ U−1

ij = U1
ij − 2∆tgij
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Solution at first time step k = 1:

U1
ij = U0

ij(1− sx − sy) + ∆tgij +
sx
2
(U0

i+1,j + U0
i−1,j) +

sy
2
(U0

i,j+1 + U0
i,j−1)

If we let ~Uk =




















Uk
11

Uk
12

Uk
13

Uk
21

Uk
22

Uk
23

Uk
31

Uk
32

Uk
33




















then for time steps, k > 1, the solution is:

Uk+1
ij = 2Uk

ij(1− sx − sy)− Uk−1
ij + sx(U

k
i+1,j + Uk

i−1,j) + sy(U
k
i,j+1 + Uk

i,j−1)

and we can write this in vector form:

~Uk+1 = A~Uk +~b− ~Uk−1

where A =:








2(1 − sx − sy) sy 0 sx 0 0 0 0 0
sy 2(1 − sx − sy) sy 0 sx 0 0 0 0
0 sy 2(1 − sx − sy) 0 0 sx 0 0 0
sx 0 0 2(1 − sx − sy) sy 0 sx 0 0
0 sx 0 sy 2(1 − sx − sy) sy 0 sx 0
0 0 sx 0 sy 2(1 − sx − sy) 0 0 sx
0 0 0 sx 0 0 2(1 − sx − sy) sy 0
0 0 0 0 sx 0 sy 2(1 − sx − sy) sy
0 0 0 0 0 sx 0 sy 2(1 − sx − sy

b =




















sxU
k
01 + syU

k
10

sxU
k
02

sxU
k
03 + syU

k
14

syU
k
20

0
syU

k
24

sxU
k
41 + syU

k
30

sxU
k
42

sxU
k
43 + sys

k
34




















8.2.2 Examples of wave equation

1. Elastic wave propagation through rocks in 1-D

σxx,x = ρUtt (8.1)



70CHAPTER 8. NUMERICAL SOLUTIONOF 1-D AND 2-DWAVE EQUATION

where

σxx = Eεxx, σxx = stress, εxx = strain

= E
∂U

∂x

8.1 ⇒ EUxx = ρUtt or Utt =
E

ρ
Uxx

elastic waves propagate with speed
√

E
ρ

2. Electromagnetic Wave Equation

c2∇2E = Ë and c2∇2B = B̈ (8.2)

From Maxwell’s equations where E is electric field, B is magnetic field.
Derived using:

∇ · E =
ρ

ǫ0
, ∇× E = −∂B

∂t
(8.3)

∇ ·B = 0, ∇×B = µ0ε0
∂E

∂t
(8.4)

taking curl of 8.3 and 8.4 and using ∇× (∇× ~V ) = ∇(∇ · ~V ) −∇2~V

and ∇(∇ · E) = ∇
(

ρ
ǫ0

)

= 0, ∇(∇ · B) = 0 gives Equation 8.2 where

c =
√

1
µ0ε0

= 3× 108m/s.

3. Schrödinger’s Wave Equation

ih̄
∂Ψ

∂t
= HΨ

• for a wavefunction Ψ of a quantum system defined by Hamiltonian,
H.
eg.H = KE + PE = − h̄2

2m
+ V (r)

• numerical solutions also need to satisfy
∫∞
−∞ |Ψ(x)|2dx = 1



Chapter 9

Finite element method

9.1 An introduction to the Finite Element

Method

• Finite difference (FD) method is an approximation to the differential
equation.

• Finite element method (FEM) is an approximation to its solution.

• FD methods are usually based on the assumption of regular domains
eg line in 1-D, rectangle in 2-D with regular elements

• FEM is better for irregular regions as the domain can be partitioned
into any simple subregion such as triangles or rectangles in 2-D or
bricks and tetrahedra in 3-D. Figure 9.1 shows a finite element mesh
with triangles for an irregular domain.

Example: Solving Poisson’s equation in 1-D using FEM

− Uxx = q, 0 ≤ x ≤ L (9.1)

We consider Dirichlet boundary conditions: U(0) = U(L) = 0. A weak
solution of (9.1) considers the variational form of (9.1):

∫ L

0
Uxx(x)φ(x)dx+

∫ L

0
q(x)φ(x) = 0, (9.2)

71
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X

Y

Z

Figure 9.1: FEM mesh with triangles

where φ(x) satisfy the boundary conditions: φ(0) = φ(L) = 0.

We can integrate the first term by parts:

∫ L

0
Uxx(x)φ(x)dx = Ux(x)φ(x)]

x=L
x=0 −

∫ L

0
Ux(x)φx(x)dx

= −
∫ L

0
Ux(x)φx(x)dx

using φ(0) = φ(L) = 0.

Then (9.2) becomes:

∫ L

0
Ux(x)φx(x)dx =

∫ L

0
q(x)φ(x)dx (9.3)

Equation (9.3) holds for all functions φ(x) which are piece-wise continous
and satisfy the bc: φ(0) = φ(L) = 0.

To solve equation (9.3) using the FEM we again introduce a mesh (as in FD)
on the interval [0, L] with mesh points xj = j∆x, j = 0, . . . , n + 1 where
∆x = L

n+1
. To complete the discretisation we must choose a basis for φ(x).

The most common basis chosen for φ(x) are the “hat” functions, φj(x).
We solve (9.3) using these:

φ(x) =
n∑

j=1

ajφj(x)
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where

φj(x) =







0, for 0 ≤ x ≤ xj−1
1
∆x

(x− xj−1), for xj−1 ≤ x ≤ xj

1− 1
∆x

(x− xj), for xj ≤ x ≤ xj+1

0, for x ≥ xj+1

6

-�
�
�
�
�
�
�
��

xj−1 xj xj+1

φj(x)

A
A
A

A
A

A
A

AA
1

� -

∆x

with this construction: φj(xi) = δij and:

φ
′

j(x) =
∂φj

∂x
=







0, for 0 < x < xj−1
1
∆x

, for xj−1 < x < xj

− 1
∆x

, for xj < x < xj+1

0, for x > xj+1

We let φ(x) =
∑n

j=1 ajφj(x) and φ(xi) = ai for i = 1, . . . , n, and φ(0) =
φ1(0) = 0 and φ(L) = φn(L) = 0 so that φ(x) satisfies boundary conditions.

The hat functions are advantageous as a basis as they are nearly “orthonor-
mal”, ie.

∫ L
0 φj(x)φk(x)dx = 0 when |j − k| > 1.

Using FEM we seek an approximate solution to (9.3) which is satisfied for
all basis functions, φi(x), for i = 1, . . . , n:

∫ L

0
Ux(x)φx(x)dx =

∫ L

0
q(x)φ(x)dx

and require that 9.3 be satisfied for φ = φi, i = 1, . . . , n. We also expand
the solution U(x) using the hat functions φi as a basis:

U(x) ≈ Uh(x) =
n∑

j=1

bjφj(x)
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This simplifies equation 9.3 and we solve for φ = φi, i = 1, . . . , n:

ie.

∫ L

0
U

′

h(x)φ
′

i(x)dx =
∫ L

0
q(x)φi(x)dx, for i = 1, . . . , n

where f
′

(x) = ∂f
∂x
.

LHS =
∫ L

0
U

′

h(x)φ
′

i(x)dx

=
∫ L

0

n∑

j=1

bjφ
′

j(x)φ
′

i(x)dx

=
n∑

j=1

Ci,jbj

where Ci,j =
∫ L
0 φ

′

j(x)φ
′

i(x)dx. Ci,j is known as the stiffness matrix in me-
chanics.

To find the coefficients bj which define our solution U(x) we must solve n
linear equations:

LHS =
n∑

j=1

Ci,jbj = RHS =
∫ L

0
q(x)φi(x)dx = qi (9.4)

for i = 1, . . . , n with qi =
∫ L
0 q(x)φi(x)dx).

We approximate the solution by expanding in the basis of “hat” functions:
U(x) ≈ ∑n

j=1 bjφj(x). Thus we only need to know the coefficients bj to
define our solution U(x) and FEM solves the following equation for vector
~b = (b1, . . . , bn):

n∑

j=1

bj

∫ L

0
φj,x(x)φi,x(x)dx =

∫ L

0
q(x)φi(x)dx,

or
n∑

j=1

bjCi,j = qi

for i = 1, . . . , n.

We will show that the stiffness matrix C is tridiagonal for this example. We
are solving the above system for coefficients bj, thus we are solving C~b = ~q
and can use iterative methods in FEM solutions too.
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We can show that the stiffness matrix is tridiagonal:

Cij =
∫ L

0
φj,x(x)φi,x(x)dx =







−1
∆x

, i = j − 1
2
∆x

, i = j
−1
∆x

, i = j + 1
0, elsewhere

We approximate qi using:

qi =
∫ L

0
q(x)φi(x)dx ≈ q(xi)

∫ L

0
φi(x)dx

= q(xi)

(
∫ xj

xj−1

1

∆x
(x− xj−1)dx+

∫ xj+1

xj

1− 1

∆x
(x− xj)dx

)

= ∆xq(xi)

We can substitute the above simplifications into equation 9.4 and arrive at
C~b = ∆x~q or 1

∆x
C~b = ~q:











2
∆x2

−1
∆x2 0 . . .

−1
∆x2

2
∆x2

−1
∆x2

. . .

0
. . . . . . . . .

...
. . . −1

∆x2
2

∆x2



















b1
b2
...
bn









=









q1
q2
...
qn









Thus the matrix system to solve is the same as FD solution in this example
and the solution involves inverting the stiffness matrix C:

~b = C−1∆x~q

Iterative methods are useful in FEM too as it involves inverting large, sparse
matrices.

Once ~b is known, the solution U to the PDE is given by:

U(x) ≈
n∑

j=1

bjφj(x)

This is a weak solution of the PDE −Uxx = q.

9.2 Comparing FEM solution to FD solution

for our example

−Uxx = q, 0 ≤ x ≤ L, U(0) = U(L) = 0
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9.2.1 FD solution

Discretise using xj = j∆x, j = 0, 1, . . . , n + 1 where ∆x = L
n+1

, U0 = 0 =
Un+1 (using boundary conditions).

We let U(xj) = Uj, q(xj) = qj. The central difference approximation to the
PDE is:

Uxx =
Uj+1 − 2Uj + Uj−1

∆x2

and − Uxx = q becomes

−Uj+1 + 2Uj − Uj−1

∆x2
= qj

We solve for U1, . . . , n since U0 and Un+1 given from boundary conditions
and we can rewrite in matrix form:











2
∆x2

−1
∆x2 0 . . .

−1
∆x2

2
∆x2

−1
∆x2

. . .

0
. . . . . . . . .

...
. . . −1

∆x2
2

∆x2











︸ ︷︷ ︸

same coefficient matrix for FD as FEM









U1

U2
...
Un









+










−U0(=0)
∆x2

0
...

−Un+1=0
∆x2










=









q1
q2
...
qn









In this example FEM and FD methods solve the same matrix system.

9.3 2-D Finite Element Method

We consider a triangular mesh (could also be rectangular) shown in figure
9.2 where G is the domain inside the circle and ∂G is the domain’s boundary.

We are solving:

−∇2U = q in G (9.5)

with boundary conditions, U = 0 on ∂G.
The weak solution for U satisfies the variational form for Equation 9.5:

−
∫ ∫

G
∇2U(x, y)φ(x, y)dxdy =

∫ ∫

G
q(x, y)φ(x, y)dxdy (9.6)
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X

Y

Z

Figure 9.2: FEM mesh with triangles

where φ(x, y) = 0 on ∂G (satisfies boundary conditions).
Using Green’s first identity:

∫ ∫

G
(φ∇2U)dxdy =

∮

∂G
φ(∇U · n̂)dS

︸ ︷︷ ︸

=0 since φ=0 on ∂G

−
∫ ∫

G
(∇φ · ∇U)dxdy

= −
∫ ∫

G
(∇φ · ∇U)dxdy

Thus equation 9.6 becomes:

∫ ∫

G
(∇φ · ∇U)dxdy =

∫ ∫

G
qφdxdy (9.7)

Which holds ∀φ ∈ G where φ = 0 on ∂G.
Similarly to the 1-D case we seek an approximate solution to equation 9.7
by expanding U(x, y) in a basis of 2-D “hat” functions:

U(x, y) ≈ Uh(x, y) =
n∑

j=1

bjφj(x, y)

where Uh(xi, yi) = bi and Uh = 0 on ∂G.
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9.3.1 2-D “hat functions”

Figure 9.3: 2D hat function (φj(xj, yj) = 1, φj(xi, yl) = 0 if i 6= j and j 6=
l)

The 2-D hat functions satisfy φj(xj, yj) = 1, φj(xi, yl) = 0 if i 6= j and j 6=
l at all other vertices. The 2D hat function is plotted in figure 9.3.

We require that equation 9.7 holds for all φ(x, y) and solve for φ = φ1, φ2, . . . , φn:
∫ ∫

G
∇Uh · ∇φidxdy =

∫ ∫

G
qφidxdy, for i = 1, . . . , n (9.8)

LHS =
∫ ∫

G
∇Uh · ∇φidxdy =

n∑

j=1

Ci,jbj

where Ci,j =
∫ ∫

G∇φj · ∇φidxdy is called the “stiffness matrix”.
Equation 9.8 becomes:

n∑

j=1

Ci,jbj = qi, for i = 1, . . . , n where qi =
∫ ∫

G
qφidxdy.

If C is symmetric and positive definite then the system has a unique solution.

9.3.2 Example: 2-D Finite Element Method using eS-
cript for elastic wave propagation from a point
source.

• eScript is a general linear solver written in python
(see http://www.uq.edu.au/esscc/escript-finley)

http://www.uq.edu.au/esscc/escript-finley
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• eScript can be applied to any problem of the form:

−(Ajla,l + Bja),j + Cla,l +Da = −Xj,j + Y

where a is the scalar we are solving for in this example.
(eScript can also solve for a vector ~a)

We are using Einstein notation and according to this convention if an index
appears twice in a single term it implies we are summing over all possible
values:

aif,ii = ai
∂2fi
∂x2

i

= ai
∂2f1
∂x2

1

+ a2
∂2f2
∂x2

We will see that the FEM takes care of spatial derivative in the problem
below. However we still need to approximate time derivatives.

We want to solve the 2-D wave equation for a point source:

Ψtt = V 2
p (Ψxx +Ψyy) + FPS

where p is the wave speed, Ψ is the wave-field and FPS is the force due to
the point source.
In eScript this becomes:

Da = −Xj,j + Y

where a = Ψtt

D = 1

X = −V 2
p Ψ,j

Y = FPS

We solve for ak at each time step tk. Once ak is known we use it to calculate
the solution at the next time step, Ψk+1 using the central difference formula:

ak =
∂2Ψk

∂t2
≈ Ψk+1 − 2Ψk +Ψk−1

∆t2

or

Ψk+1 = 2Ψk −Ψk−1 −∆t2ak

The eScript python code can be downloaded from here and the output from
this code is shown in figure 9.4.

http://www.uq.edu.au/~uqlkett1/Louise_Olsen_Teaching_Info/MATH3203LectureNotes/2Dpointsource.py
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Figure 9.4: Plot of Euclidean normal of the displacement at t > 0 for a point
source using eScript.



Chapter 10

Spectral methods

10.1 An introduction to spectral methods

• remove spurious dispersion and are highly accurate

• exponential convergence for smooth functions (smooth functions have
rapidly decaying Fourier transforms)

• usually involve calling a Fast Fourier Transform (fft) subroutine.

• good for smooth solutions.

• Like the FEM, the spectral method also approximates the solution
U(x).

• FEM approximates the solution as a linear combination of piece-wise
functions that are non-zero only on small subdomains (“hat” functions)-
local approach.

• spectral methods approximate the solution as a linear combination of
continuous functions that are generally nonzero throughout the domain
(usually sinusoids or Chebychev polynomials)- global approach.

We will show an example using the spectral method where U(x) is expanded
as a Fourier series and this series and its spatial derivatives are then substi-
tuted into the PDE resulting in a system of ODEs in time.

81
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10.1.1 Example 1: Comparing the accuracy of solu-
tions of a variable speed wave equation with
either the spectral or finite difference method

Spectral method for variable speed wave equation

In this example we will compare the accuracy of either the spectral or finite
difference method when solving the 1D advection equation with a variable
wave speed, c(x) = 1

5
+ sin2(x − 1). First we will derive the solution using

the spectral method:

Ut + c(x)U(x) = 0, 0 ≤ x ≤ 2π and 0 ≤ t ≤ 9

U(x, 0) = exp(−100(x− 1)2)

c(x) =
1

5
+ sin2(x− 1)

U(0, t) = U(2π, t) periodic boundary condition

The matlab code can be downloaded from here.

Again we discretise in space and time: ∆x = 2π
2n

= π
n
, ∆t = T

m

xj = j∆x, j = 0, 1, 2, . . . , 2n− 1
tk = k∆t, k = 0, 1, 2, . . . ,m
U(xj, tk) = Uk

j

The spectral method uses the discrete Fourier transform of U(xj, t):

Ûν = F (U),

=
2n−1∑

j=0

U(xj, t) exp(−ixjν)

=
2n−1∑

j=0

U(xj, t) exp(−i2πjν/(2n)), using xj = j∆x = j2π/2n

=
2n−1∑

j=0

U(xj, t) exp(−iπjν/n)

for ν = −n+ 1, . . . , n.

U(xj, t) is then defined as the inverse discrete Fourier transform of Ûν :

U(xj, t) = Uj = F−1(Û),

=
1

2n

n∑

ν=−n+1

Ûν exp(ixjν)

=
1

2n

n∑

ν=−n+1

Ûν exp(i2πjν/(2n)

http://www.uq.edu.au/~uqlkett1/Louise_Olsen_Teaching_Info/MATH3203LectureNotes/spectral_variable_wave_speed.m


10.1. AN INTRODUCTION TO SPECTRAL METHODS 83

where j = 0, . . . , 2n− 1.

With this definition the spatial derivatives are:

∂U(xj, t)

∂x
=

1

2n

n∑

ν=−n+1

iνÛν exp(ixjν)

= F−1(iνÛ)

= F−1(iνF (U))

We solve the advective equation with variable wave speeds and compare the
solution with either FD or spectral method:

Ut + c(x)Ux = 0

where c(x) =
1

5
+ sin2(x− 1)

ic: U(x, 0) = exp(−100(x− 1)2)

periodic bc: U(0, t) = U(π, t)

The central difference approximation is used for Ut and spectral method for
Ux:

Uk+1
j − Uk−1

j

2∆t
︸ ︷︷ ︸

leap-frog for Ut

+ c(xj) F−1(iνF (Uk
j ))

︸ ︷︷ ︸

spectral method for Ux

= 0

or Uk+1
j = Uk−1

j + 2∆tc(xj)F
−1(iνF (Uk

j ))

For U1
j need U0

j and U−1
j

U(x, 0) = U0
j = exp(−100(x− 1)2)

since c(x) ≈ 1
5
we can assume a constant wave speed of ≈ 1/5 to calculate

U−1
j at t = −∆t.

U−1
j = U(x,−∆t) = U(x+ c(x)∆t) ≈ U0(x+

1

5
∆t) = exp(−100(x+

∆t

5
− 1)2)

The matlab code can be downloaded from here.

http://www.uq.edu.au/~uqlkett1/Louise_Olsen_Teaching_Info/MATH3203LectureNotes/spectral_variable_wave_speed.m
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Comparing accuracy of solution with spectral method vs. finite
difference method

Solve again using finite difference.

Ut + c(x)Ux = 0

This matlab code can be downloaded from here.

The Lax method is used for Ut and central difference method for Ux:

∂U

∂t
=

Uk+1
j − 1

2
(Uk

j−1 + Uk
j+1)

∆t
∂U

∂x
=

Uk
j+1 − Uk

j−1

2∆x
c(xj) = cj.

Plug the formulas into the PDE:

Uk+1
j − 1

2
(Uk

j−1 + Uk
j+1)

∆t
︸ ︷︷ ︸

Ut

+c(xj)
Uk
j+1 − Uk

j−1

2∆x
︸ ︷︷ ︸

Ux

= 0

or Uk+1
j =

1

2
(1 + scj)U

k
j−1 +

1

2
(1− scj)U

k
j+1

where s = ∆t/∆x. Using 4 elements:

x0 x1 x2 x3 x4

Uk
0 = 0 = Uk

4 given by boundary conditions
U0
j = U(x, 0) given by initial conditions

~Uk+1 =






Uk+1
1

Uk+1
2

Uk+1
3




 =

1

2






0 1− sc1 0
1 + sc2 0 1− sc2

0 1 + sc3 0











Uk
1

Uk
2

Uk
3




+

1

2






(1 + sc1)U
k
0

0
(1− sc3)U

k
4






or ~Uk+1 = A~Uk +~b

http://www.uq.edu.au/~uqlkett1/Louise_Olsen_Teaching_Info/MATH3203LectureNotes/fd_variable_wave_speed.m
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Figure 10.1: Numerical solution for 1D advection equation with initial condi-
tions of a smooth Gaussian pulse with variable wave speed using the spectral
method in (a) and finite difference method in (b)

Figure 10.1(b) shows that the solution using finite differences is much worse
than the spectral method because dispersion is introduced in FD method
when a variable wave speed is applied. However figure 10.1(a) shows the
spectral method performs well when smooth initial conditions of a Gaussian
pulse are used and there is very little dispersion present.

10.1.2 Example 2 Comparing spectral and finite dif-
ference methods with constant wave speed con-
ditions and initial conditions of a non-smooth
pulse

We solve the advective equation with constant wave speed (c = 1) with initial
conditions of a box pulse and compare the solution with either FD or spectral
method:

Ut + Ux = 0

ic: U(x, 0) =

{

1, 0.5 ≤ x ≤ 1.
0, otherwise

periodic bc: U(0, t) = U(π, t)

• The matlab code for the spectral solution can be downloaded from here.

• The matlab code for the FD solution can be downloaded from here. In
this code we have chosen the time step carefully so that no dispersion
is present for a constant wave speed of c = 1. Please see section 7.7.2
for a discussion on dispersion in finite difference methods.

http://www.uq.edu.au/~uqlkett1/Louise_Olsen_Teaching_Info/MATH3203LectureNotes/spectral_c_1_box.m
http://www.uq.edu.au/~uqlkett1/Louise_Olsen_Teaching_Info/MATH3203LectureNotes/fd_c_1_box.m
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Figure 10.2: Numerical solution for 1D advection equation with initial con-
ditions of a box pulse with a constant wave speed using the spectral method
in (a) and finite difference method in (b)

Figure 10.2(a) shows that the solution with an initial condition which is not
smooth like the box pulse we used here using the spectral method is much
worse than the finite difference method. This is because the spectral method
uses Fourier series to approximate the initial conditions and is unable to
approximate non-smooth initial conditions accurately. It is important to
note that for the numerical solution using the FD method in figure 10.2(b)
that we were able to remove dispersion in this example by carefully choosing
∆t = ∆x/c (see section 7.7.2).



Part III

Nonlinear partial differential
equations
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Chapter 11

Shock wave

11.1 Analytical solution: Method of charac-

teristics

Analytical solution to the shock wave equation is given by the method of
characteristics. We will illustrate this method first for a linear first-order
PDE:

• can be applied to first order PDEs:

a(x, t)Ux + b(x, t)Ut + c(x, t)U = 0 (11.1)

with initial conditions U(x, 0) = f(x)

We change co-ordinates from (x, t) to (x0, s) so that our PDE 11.1 becomes
an ODE for certain characteristic curves in the x-t plane. The new variable,
s, will vary along the characteristic curves, whereas x0 will remain constant.
How does it work?

We let:
dx

ds
= a(x, t),

dt

ds
= b(x, t)

Then
dU

ds
=

dx

ds

∂U

∂x
+

dt

ds

∂U

∂t
= aUx + bUt (11.2)

We substitute 11.2 into 11.1:

⇒ dU

ds
+ c(x, t)U = 0

88
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This is an ODE along the characteristic curves satisfying the characteristic
equations:

dx

dt
= a(x, t) and

dt

ds
= b(x, t)

11.1.1 Example 1: Using method of characteristics to
solve the linear 1-D advection equation

Ut + cUx = 0

initial conditions: x(s = 0) = x0, t(s = 0) = 0

U(x, t = 0) = f(x) or U(s = 0) = f(x0)

dx

ds
= c ⇒ x = cs+ k1, use x(0) = x0 = k1

⇒ x = cs+ x0

dt

ds
= 1 ⇒ t = s+ k2, use t(0) = 0 = k2

⇒ t = s

and since t = s ⇒ x = ct+ x0

Solve for U :

dU

ds
=

dt

ds
Ut +

dx

ds
Ux = Ut + cUx = 0

ie dU
ds

= 0 ⇒ U = k3 (U is constant along characteristic curves).
Use initial conditions U(s = 0, x0) = f(x0) = k3
ie U = f(x0) = f(x− ct) since x0 = x− ct.
This is the same as D’Alembert’s solution for a wave moving to the right at
speed c. The characteristic curves are given by: x = x0+ ct or t = 1

c
(x−x0).
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11.1.2 Example 2: Using method of characteristics to
solve the nonlinear inviscid Burger’s equation

Shock waves result when solving the nonlinear inviscid Burger’s equation:

Ut + UUx = 0

initial conditions: x(s = 0) = x0, t(s = 0) = 0

U(x, t = 0) = f(x) or U(s = 0) = f(x0)

Now the wave speed is not constant but depends on the amplitude U(x, t).
The characteristic equations are:

dt

ds
= 1 ⇒ t = s (using t(0) = 0)

dx

ds
= U ⇒ x = Ut+ x0 (using x(0) = x0 and t = s)

Again:

dU

ds
=

dt

ds

∂U

∂t
+

dx

ds

∂U

∂x
= Ut + UUx = 0

⇒ U = k3 = f(x0) = f(x− Ut)

So U = f(x − Ut) is given implicitly since U is a function of itself. The
characteristic curves given by

t =
1

U
(x− x0) =

1

f(x0)
(x− x0)

The characteristic curves no longer have constant slope - they may cross
(meaning U is multiply defined → shock waves) or be discontinuous (regions
with no solution for U → expansion waves) as we will see in the next example.

Example

Solving Ut + UUx = 0 with the following initial conditions:

U(x, t = 0) = f(x) =

{

U1, x > 0
U2, x < 0

t =

{
1
U1
(x− x0), x > 0 or x = U1t+ x0

1
U2
(x− x0), x < 0 or x = U2t+ x0
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2 cases

U1 < U2 - compression wave → shock

U1 > U2 - expansion wave → rarefaction

Case 1: Shock wave U1 < U2
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In the fan bounded by x = U1t and x = U2t the characteristic curves are
multi-valued leading to shocks (breaking waves). We illustrate this below:
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Case 2: Rarefaction or expansion wave U1 > U2
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The solution is single-valued for t > 0 unlike the shock wave case. However
in wedge between x = U2t and x = U1t there is no information. We assume
x = Ut in wedge since U2t ≤ x ≤ U1t and speeds vary U2 ≤ U ≤ U1 and add
solution to the wedge.

Adding solution to wedge:
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rarefaction
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11.2 Numerical Solution for nonlinear Burger’s

Equation

Ut + UUx = 0, 0 ≤ x ≤ 1, 0 ≤ t ≤ 1

U(x, 0) = f(x) = exp(−10(4x− 1)2)

Solution given implicitly by U(x, t) = f(x− Ut) so speed depends on ampli-
tude, U .
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Figure 11.1: The analytical solution U(x, t) = f(x − Ut) is plotted to show
how shock and rarefaction develop for this example

We study the numerical solution using 3 methods but we will see in each
case that the numerical solution fails to produce a shock wave because we
are unable to produce multi-valued solutions.



94 CHAPTER 11. SHOCK WAVE

11.2.1 Example I: Finite difference solution with Lax

Method

The matlab code can be downloaded from here. We are solving:

Ut + UUx = 0

∂Uk
j

∂t
=

Uk+1
j − 1

2
(Uk

j−1 + Uk
j+1)

∆t
(Lax method for Ut)

∂Uk
j

∂x
=

Uk
j+1 − Uk

j−1

2∆x
(leap-frog for Ux)

The Courant condition only holds for linear wave equation. A good guess is
∆t << ∆x

max(U)
.(Waves travel at a maximum wave speed U = 1.)

Put difference equations into PDE:

Ut + UUx = 0 becomes:

Uk+1
j =

1

2

{

Uk
j+1(1− sUk

j ) + Uk
j−1(1 + sUk

j )
}

(11.3)

Where s = ∆t
∆x

Use boundary conditions U(0, t) = U(1, t) = 0 and for 4 elements:

x0 x1 x2 x3 x4

So Uk
0 = 0 = Uk

4 given by boundary conditions and we can rewrite Equation
11.3 as a matrix system of equations:

~Uk+1 =






Uk+1
1

Uk+1
2

Uk+1
3




 =

1

2






0 1− sUk
1 0

1 + sUk
2 0 1− sUk

2

0 1 + sUk
3 0











Uk
1

Uk
2

Uk
3






+
1

2






(1 + sUk
1 )U

k
0

0
(1− sUk

3 )U
k
4






=
1

2
A~Uk +

1

2
~b

A varies with time because of Uk
j term in matrix!

http://www.uq.edu.au/~uqlkett1/Louise_Olsen_Teaching_Info/MATH3203LectureNotes/Shock_Lax.m
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Figure 11.2: Initial conditions in (a) and solution for nonlinear Buger’s equa-
tion using the Lax method in (b)

We can compare the difference between the matlab code for the linear 1D advection equation
(Ut + Ux = 0) in section 7.7.2 and the shock wave equation (Ut + UUx = 0)
above.

When we compare the analytical solution given by the method of character-
istics to the numerical solution given by the Lax method we can see that the
numerical solution is accurate for the linear 1D advection equation (see nu-
merical solution in figure 7.1) but fails to give a shock wave for the nonlinear
Burger’s equation in figure 11.2. The Lax method introduces dispersion into
the numerical solution and in the nonlinear case this “removes” the shock
wave instability and flattens the wave front.

11.2.2 Example II: Solution using Method of Lines

The matlab code can be downloaded from here and here.

∂U

∂t
= −UUx

Using the method of lines solution (as demonstrated in section 2.3) we only
replace spatial derivative Ux with FD approximation.

∂Uj

∂x
=

Uj+1 − Uj−1

2∆x
,⇒ ∂Uj

∂t
= −Uj

(
Uj+1 − Uj−1

2∆x

)

and again we show the case with 4 elements:

http://www.uq.edu.au/~uqlkett1/Louise_Olsen_Teaching_Info/MATH3203LectureNotes/Lax_Flux.m
http://www.uq.edu.au/~uqlkett1/Louise_Olsen_Teaching_Info/MATH3203LectureNotes/Shock_Lax.m
http://www.uq.edu.au/~uqlkett1/Louise_Olsen_Teaching_Info/MATH3203LectureNotes/Shock_mol.m
http://www.uq.edu.au/~uqlkett1/Louise_Olsen_Teaching_Info/MATH3203LectureNotes/Uprime2.m


96 CHAPTER 11. SHOCK WAVE

x0 x1 x2 x3 x4

U0 = 0 = U4 from boundary conditions.

∂~U

∂t
=






U̇1

U̇2

U̇3




 =

1

2∆x






0 −U1 0
U2 0 −U2

0 U3 0











U1

U2

U3




+

1

2∆x






U1U0

0
−U3U4






or

~̇U =
1

2∆x
A(U)~U +~b

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Initial condition for U

x

U

Figure 11.3: Initial conditions in (a) and solution for nonlinear Buger’s equa-
tion using the method of lines in (b)

When the shock develops in figure 11.3(b) the numerical solution becomes
unstable using the method of lines.

11.2.3 Example III: Solution using Spectral Method

The matlab code can be downloaded from here.

Ut = −UUx, 0 ≤ x ≤ 2π

(we can change variable: ξ = x
2π

later so that the range for ξ is 0 ≤ ξ ≤ 1)

http://www.uq.edu.au/~uqlkett1/Louise_Olsen_Teaching_Info/MATH3203LectureNotes/Shock_spectral.m
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Spectral method

We let U(xj, tk) = Uk
j , xj = j∆x, j = 0, 1, . . . , 2n − 1, tk = k∆t, k =

0, 1, . . . ,m, and ∆t = T
m
.

Take the discrete Fourier transform of U :

Ûν = F (U) =
2n−1∑

j=0

U(xj, t) exp(−ixjν) for ν = −n+ 1, . . . , n

where xj = j∆x =
jπ

n

then

Uj = F−1(Û) =
1

2n

n∑

ν=−n+1

Ûν exp(ixjν)

for j = 0, 1, . . . , 2n− 1

and

∂Uk
j

∂x
=

1

2n

n∑

ν=−n+1

iνÛν exp(ixjν)

= F−1(iνÛ)

= F−1(iν F (U))

Use leap-frog for Ut:

Ut =
Uk+1
j − Uk−1

j

2∆t

then Ut = −UUx becomes:

Uk+1
j = Uk−1

j − 2∆tUk
j F−1(iν F (Uk

j ))

To find U−1
j for spectral method we assume wave speed ≈ 1 and:

U−1
j = U(x,−∆t) = U0(x− Ut) = f(x− Ut)

≈ f(x+∆t) = exp(−10(4(x+∆t)− 1)2)

Again as in the method of lines the numerical solution becomes unstable as
shock develops in figure 11.4 using the spectral method.
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Figure 11.4: Initial conditions in (a) and solution for nonlinear Buger’s equa-
tion using the spectral method in (b)



Chapter 12

Korteweg-de Vries Equation

12.1 Solitons

• solitons or solitary waves result from solution of the KdV equation

• KdV equation is a model for shallow water waves:

Ut + UUx + Uxxx = 0 nonlinear PDE

• analytical solutions exist

• solitons move in isolation and propagate without changing form. Ve-
locity is amplitude dependent (linearly proportional to maximum am-
plitude).

• the nonlinear term causes waves to steepen (UUx

• the dispersive term causes waves to disperse (Uxxx)

• these effects are in exact balance for solitons → waveform maintains
its size, shape and speed as it travels.

• solitons pass through each other without change of form except shifted.

12.2 Analytical solution

Ut + UUx + Uxxx = 0

99
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Let U = f(ξ) = f(x− V t) where ξ = x− V t then:

∂

∂t
=

∂ξ

∂t

∂

∂ξ
= −V

∂

∂ξ
,

∂

∂x
=

∂ξ

∂x

∂

∂ξ
=

∂

∂ξ

Let f ′(ξ) = df
∂ξ

then Ut + UUx + Uxxx = 0 becomes: (using U = f(ξ) =

f(x− V t))

−V f ′ + ff ′ + f ′′′ = 0

We integrate once: (use ff ′ = d
dξ
(f

2

2
))

− V
∫

f ′dξ +
∫ d

dξ
(
f 2

2
)dξ +

∫

f ′′′dξ = 0

⇒ −V f +
f 2

2
+ f ′′ = C (12.1)

Multiply by f ′ and integrate again:

−
∫

V ff ′dξ +
∫

f ′f
2

2
dξ +

∫

f ′f ′′dξ =
∫

Cf ′dξ + c0

Term 1 =
∫

V ff ′dξ = V f 2 −
∫

V ff ′dξ ⇒
∫

V ff ′dξ =
V

2
f 2

Term 2 =
∫

f ′f
2

2
dξ =

f 3

2
−
∫

f 2f ′dξ ⇒
∫

f ′f
2

2
dξ =

f 3

6

Term 3 =
∫

f ′f ′′dξ = (f ′)2 −
∫

f ′′f ′dξ ⇒
∫

f ′f ′′dξ =
f ′2

2
⇒

So multiplying 12.1 by f ′ and integrating again gives:

−V

2
f 2 +

f 3

6
+

f ′2

2
= Cf + C0 (12.2)

We assume boundary conditions f(ξ) → 0, f ′(ξ) → 0 as ξ → ±∞.

So Equation 12.2⇒ C0 = 0 and Equation 12.1⇒ C = 0.
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Figure 12.1: The initial conditions U(x, 0) = f(x) = Asech2(
√

A
12
x).

We assume initial conditions for soliton:

U(x, 0) = f(x) = Asech2(

√

A

12
x)

So f(0) = A and f ′(0) = 0 and f ′(ξ) ≤ 0 for ξ ≥ 0.
Rearranging Equation 12.2 gives

f ′2 = V f 2 − f 3

3
(12.3)

Use

f(0) = A, f ′(0) = 0 ⇒ 0 = A2(V − A

3
)

⇒ V =
A

3

Since f ′(ξ) ≤ 0 for ξ ≥ 0 we take the negative square root of 12.3:

f ′ =
−f√
3

√

A− f

This can be integrated analytically by making a change of variable if we let
f = Asech2θ then df = −2Asech2θ tanh θdθ and integrating:

f ′ =
−f√
3

√

A− f
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Since we assumed ξ ≥ 0 we integrate from ξ = 0 in integration limits:

⇒
∫ ξ

0

df
dξ
dξ

f
√
A− f

= − 1√
3

∫ ξ

0
dξ

⇒ − ξ√
3
=
∫ f(ξ)

f(0)

df

f
√
A− f

=
∫ f

A

df

f
√
A− f

now substitute f = Asech2θ

=
∫ θ

0

−2Asech2θ tanh θdθ

Asech2θ
√

A− Asech2θ

=
∫ θ

0

−2 tanh θdθ
√
A
√

1− sech2θ

now use 1− sech2θ = tanh2 θ

⇒
∫ θ

0

−2√
A
dθ =

−2θ√
A

= − ξ√
3

⇒ θ =

√

A

12
ξ

U(x, t) = f(ξ) = Asech2θ

= Asech2





√

A

12
ξ





⇒ U(x, t) = Asech2





√

A

12
(x− A

3
t)





︸ ︷︷ ︸

soliton travelling to right

(using V =
A

3
)

where sechx = 1

coshx
and coshx = 1

2
(e−x + ex).

12.3 Numerical solution of KdV Equation

Ut + UUx + Uxxx = 0, 0 ≤ x ≤ 2π

with periodic boundary conditions U(0) = U(2π).
and initial conditions:

U(x, 0) = Asech2(

√

A

12
(x− π)), A = 100
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The analytical solution is:

U(x, t) = Asech2





√

A

12
(x− π − A

3
t)





If we apply the spectral method directly we find that the linear term, Uxxx,
involves high frequencies making the numerical solution unstable as we will
see in section 12.3.1. Section 12.3.2 shows how to modify this term to gain
stability using a modified spectral method.

12.3.1 Solving directly with Spectral Method

Ut + UUx + Uxxx = 0

The matlab code can be downloaded from here.

Take discrete Fourier transform of U :

Ûν = F (U) =
2n−1∑

j=0

U(xj, t) exp(−ixjν), for ν = −n+ 1, . . . , n

and the inverse discrete Fourier transform of Û :

Uj = F−1(Û) =
1

2n

n∑

ν=−n+1

Ûν exp(ixjν), for j = 0, . . . , 2n− 1

We calculate spatial derviatives using spectral method:

Ux =
∂Uk

j

∂x
=

1

2n

n∑

ν=−n+1

Ûν(iν) exp(ixjν)

= F−1(iνÛ) = F−1(iνF (U))

and:

Uxxx =
∂3Uk

j

∂x3
=

1

2n

n∑

ν=−n+1

Ûν(−iν3) exp(ixjν)

= F−1(−iν3Û) = F−1(−iν3F (U))

↑
At high wavenumbers, ν, this term causes instabilities in solution.
We use a leap-frog approximation for Ut:

∂Uk
j

∂t
=

Uk+1
j − Uk−1

j

2∆t

http://www.uq.edu.au/~uqlkett1/Louise_Olsen_Teaching_Info/MATH3203LectureNotes/SpectralDirectSoliton.m
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Plug approximations into PDE: Ut + UUx + Uxxx = 0,

Uk+1
j = Uk−1

j − 2∆t
(

Uk
j F

−1(iνF (U)) + F−1(−iν3F (U))
)

⇒ solution blows up!
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Figure 12.2: Initial conditions in (a) and solution for nonlinear KdV equation
using the direct spectral method in (b)

Figure 12.2 shows that the numerical solution for the KdV equation blows
up using a direct spectral method. In the next section we modify the Uxxx

term causing instabilities.

12.3.2 Modifying Uxxx term causing instabilities in di-
rect spectral method

The matlab code can be downloaded from here.

The direct method solves:

Uk+1
j = Uk−1

j + 2∆t[Uk
j F

−1(ivF (U)) + F−1(−iv3F (U))]

↑
The last term approximating Uxxx makes PDE very stiff at high wavenumbers

To remove this instability for high wavenumbers we replace the last term
with:

sin(v3∆t) ≈ v3∆t+ 0(∆t3) as ∆t → 0 this is satisfied

Using sin x = x− x3

3!
+ x5

5!
− . . . and re-solve with this approximation:

Uk+1
j = Uk−1

j + 2∆tUk
j F

−1(ivF (U)) + 2F−1(−i sin(v3∆t)F (U))

http://www.uq.edu.au/~uqlkett1/Louise_Olsen_Teaching_Info/MATH3203LectureNotes/SpectralModifiedSoliton.m
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⇒ This numerical solution is stable!
(See Fornberg and Whitham, Philos. Trans. Roy. Soc. London (1974))
Again use the same initial conditions:

U−1
j = U(xj,−∆t) = U0

(

x+
A

3
∆t
)

= f
(

x+
A

3
∆t
)

= Asech2(

√

A

12

(

x+
A

3
∆t− π)

)
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Figure 12.3: Initial conditions and final solution after one period in (a) and
solution for nonlinear KdV equation using a modified spectral method in (b)

Figure 12.3 shows that the numerical solution for the KdV equation is sta-
ble using a spectral method where we have modified the Uxxx term causing
instabilities.

The method of integrating factors can also be used to remove the instability
due to Uxxx term (see Trefethen).

12.3.3 Interacting Solitons

The matlab code can be downloaded from here.

When 2 solitons travelling at different speeds collide their waveform main-
tains same size, shape and speed but the smaller (and slower) soliton is
backward shifted and the taller (and faster) soliton is forward shifted.

http://www.uq.edu.au/~uqlkett1/Louise_Olsen_Teaching_Info/MATH3203LectureNotes/InteractingSoliton.m
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To show this feature of solitons we begin with intial conditions of two solitons
with speeds of V = 2A/3 and V = A/3:

U(x, 0) = f(x) = Asech2





√

A

12
(x− 3π

2
)



+ 2Asech2





√

2A

12
(x− π

2
)





where A = 100.
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Figure 12.4: The initial conditions U(x, 0) = f(x) is plotted to show the 2
solitions and their speeds

Figure 12.5 shows the numerical solution for the KdV equation for 2 interact-
ing solitons using the modified spectral method. In figure 12.5(a) we plot the
initial conditions and final solution after one period. We see that after the
interaction the smaller soliton is backward shifted and taller soliton forward
shifted in time.
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Figure 12.5: Initial conditions and final solution after one period in (a) and
solution for nonlinear KdV equation for two interacting solitons in (b)
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