Numerical Solution of PDEs

CPS 5310 Spring 2014
Shirley Moore, Instructor
April 8 Class

Symmetry and Dimensionality

- Numerical algorithms are extremely expensive in terms of computation time and memory requirements.
- So, simplify the problem first if possible.
- Main idea: Use symmetry to reduce the problem to one with lower dimensionality.
- Computational effort depends dramatically on the number of dimensions.

1D Example

- Consider a unit cube with
 - a constant temperature T_t at the top surface (z = 1)
 - a constant temperature T_b at the bottom surface (z = 0)
 - a perfect thermal insulation of all other surfaces of the cube
- What is the stationary temperature distribution
 T(x, y, z) within the cube.
- Formulate the problem with as low a dimensionality as possible.

2D Example

- Consider a unit cube with
 - a constant temperature T_b at the back surface of the cube (y = 1)
 - a constant temperature T_f at the strip y = 0, 0.4 ≤ x ≤ 0.6 at the front surface of the cube
 - a perfect insulation of all other surfaces of the cube
- What is the stationary temperature distribution within the cube?
- Formulate the problem with a low dimensionality as possible.

Rotational Symmetry

- Consider a cylinder with
 - a constant temperature T_t at the top surface of the cylinder
 - a constant temperature T_s at a strip around the cylinder
 - perfect thermal insulation of all other surfaces of the cylinder
- What is the stationary temperature distribution T(x, y, z) within the cylinder?

Numerical Methods for Solving PDEs

- Finite difference methods
- Finite element methods
- Method of lines
- Spectral methods
- Finite volume methods

We will study the first two.

Finite Difference Methods

- Main idea: replace derivatives with finite differences
- 1D heat equation $\frac{\partial T}{\partial t} = \frac{K}{C\rho} \frac{\partial^2 T}{\partial x^2}$
- Fourth-order central-difference approximation

$$\frac{T(x,t+\Delta t)-T(x,t)}{\Delta t} = \frac{K}{C\rho} \frac{T(x+\Delta x,t)+T(x-\Delta x,t)-2T(x,t)}{\left(\Delta x\right)^2}$$

Implement as

$$T_{i,j+1} = T_{i,j} + \eta \left(T_{i+1,j} + T_{i-1,j} - 2T_{i,j} \right)$$

R Implementation

- Book software HeatClos.r
- Saves memory by storing temperatures at only two times
- Compares numerical and analytical solutions

Stability

- Try increasing Δt in HeatClos.r
- Beyond a certain limit, the solution becomes unstable.
- How can use choose Δt and $\Delta \chi$ so that the solution is stable?
- HeatClos.r implements an explicit method
- Implicit methods (also called backwards methods) are more stable but require solving a system of (sparse) linear equations.