Elliptic PDEs

CPS 5310 Spring 2014
Shirley Moore, Instructor
April 3 Class

Laplace's Equation

 Many stationary (time-independent) processes are described by Laplace's equation:

$$\nabla^2 u = 0$$

- A function is said to be harmonic on a region if it satisfies Laplace's equation on the region and its first and second derivatives are continuous in that region. Examples: 2xy, x² – y², e^{-x} cos y
- Important in many fields of science, notably electromagnetism, astronomy, and fluid dynamics, because it can be used to accurately describe the behavior of electric, gravitational, and fluid potentials.
- In the study of heat conduction, the Laplace equation is the steady-state heat equation.

Poisson's Equation

The nonhomogeneous equation

$$\nabla^2 u = -f$$

- Broad utility in electrostatics, mechanical engineering and theoretical physics
- Commonly used to model diffusion

Laplace Operator in Other Coordinates

Polar coordinates:

$$x = r\cos\varphi, \quad y = r\sin\varphi$$

$$\nabla^2 = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2}{\partial \omega^2}$$

Cylindrical coordinates:

$$x = r \cos \varphi$$
, $y = r \sin \varphi$, $z = z$

$$\nabla^2 = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2}{\partial \varphi^2} + \frac{\partial^2}{\partial z^2}$$

Other Coordinates (cont.)

Spherical coordinates:

$$\nabla^2 = \frac{1}{r^2} \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) + \frac{1}{r^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{r^2 \sin^2 \theta} \frac{\partial^2}{\partial \theta^2}$$

Boundary Value Problems

- No initial conditions since problems are steady-state
- Can have Dirichlet, Neumann, and/or mixed boundary conditions that can be homogenous or non-homogeneous.