CS4390/5390 Fall 2013 Shirley Moore, Instructor Homework 7 Due Thursday, December 5

1. Let $F: \{0,1\}^n \times \{0,1\}^n \rightarrow \{0,1\}^n$ be a secure PRF (e.g., a PRF where the key space, input space, and output space are all $\{0,1\}^n$ and say n = 128). Tell which of the following is a secure PRF and which is not. Explain your answers.

a.
$$F'((k_1,k_2),x) = F(k_1,x) \oplus F(k_2,x)$$

b.
$$F'(k,x) = k \oplus x$$

c.
$$F'(k,x) = reverse(F(k,x))$$
 where $reverse(y)$ reverses the string y.

d.
$$F'(k,x) = F(k, x \oplus 1^n)$$

e.
$$F'(k, x) = \begin{cases} F(k, x) & \text{if } x \neq 0^n \\ k & \text{otherwise} \end{cases}$$

e.
$$F'(k,x) = \begin{cases} F(k,x) & \text{if } x \neq 0^n \\ k & \text{otherwise} \end{cases}$$
f.
$$F'(k,x) = \begin{cases} F(k,x) & \text{if } x \neq 0^n \\ 0^n & \text{otherwise} \end{cases}$$

2. As far as we know, AES is a perfectly good 128-bit block cipher

AES: $K\times\{0,1\}^{128} \rightarrow \{0,1\}^{128}$. But suppose we want a 127-bit block cipher $E: K' \times \{0, 1\}^{127} \rightarrow \{0, 1\}^{127}$. Describe a construction E that you can prove will be a secure pseudorandom permutation, assuming only that AES is a secure pseudorandom permutation. Your scheme E should be such that we can compute $E_{k}'(x)$ efficiently: the expected running time to compute $E_{k}'(x)$ should be some small constant. Provide a proof of security for your construction.

Problems 3 and 4 refer to the following definition:

Cipher Block Chaining Message Authentication Code (CBC MAC) Let E: K \times {0, 1}ⁿ \rightarrow {0, 1}ⁿ be a block cipher. The CBC MAC over block cipher E has key space K and is given by the following algorithm:

algorithm MAC_K(M) if M \notin ({0, 1}ⁿ)+ then return \perp Break M into n-bit blocks M₁ · · · M_m $C_0 \leftarrow 0^n$ for i=1 to m do $C_i \leftarrow E_K(C_{i-1} \oplus M_i)$ return C_m

3. Consider the following variant of the CBC MAC, intended to allow one to MAC messages of arbitrary length. The construction uses a block cipher

 $E:\{0,1\}^k\times\{0,1\}^n\to\{0,1\}^n$, which you should assume to be secure. The domain

for the MAC is $(\{0,1\}^n)^+$. To MAC M under key K compute CBCK(M $\||M|$), where |M| is the length of M, written in n bits and $\|$ means concatenation. Of course K has k bits. Show that this MAC is completely insecure: break it with a constant number of queries.

4. Consider the following variant of the CBC MAC, intended to allow one to MAC messages of arbitrary length. The construction uses a block cipher $E:\{0,1\}^{k}\times\{0,1\}^{n}\to\{0,1\}^{n}\text{ , which you should assume to be secure. The domain for the MAC is <math>(\{0,1\}^{n})^{+}$. To MAC M under key (K,K') compute $CBC_{K}(M)\oplus K'$. K has k bits and K' has n bits. Show that this MAC is completely insecure: break it with a constant number of queries.