Numerical Linear Algebra: iterative methods

Victor Eijkhout

Two different approaches

Solve $A x=b$
Direct methods:

- Deterministic
- Exact up to machine precision
- Expensive (in time and space)

Iterative methods:

- Only approximate
- Cheaper in space and (possibly) time
- Convergence not guaranteed

Iterative methods

Choose any x_{0} and repeat

$$
\begin{gathered}
x^{k+1}=B x^{k}+c \\
\text { until }\left\|x^{k+1}-x^{k}\right\|_{2}<\epsilon \text { or until } \frac{\left\|x^{k+1}-x^{k}\right\|_{2}}{\left\|x^{k}\right\|}<\epsilon
\end{gathered}
$$

Example of iterative solution

Example system

$$
\left(\begin{array}{ccc}
10 & 0 & 1 \\
1 / 2 & 7 & 1 \\
1 & 0 & 6
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
21 \\
9 \\
8
\end{array}\right)
$$

with solution $(2,1,1)$.
Suppose you know (physics) that solution components are roughly the same size, and observe the dominant size of the diagonal, then

$$
\left(\begin{array}{lll}
10 & & \\
& 7 & \\
& & 6
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
21 \\
9 \\
8
\end{array}\right)
$$

might be a good approximation: solution (2.1, 9/7, 8/6).

Iterative example'

Example system

$$
\left(\begin{array}{ccc}
10 & 0 & 1 \\
1 / 2 & 7 & 1 \\
1 & 0 & 6
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
21 \\
9 \\
8
\end{array}\right)
$$

with solution $(2,1,1)$.
Also easy to solve:

$$
\left(\begin{array}{ccc}
10 & & \\
1 / 2 & 7 & \\
1 & 0 & 6
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
21 \\
9 \\
8
\end{array}\right)
$$

with solution (2.1, 7.95/7, 5.9/6).

Iterative example"

Instead of solving $A x=b$ we solved $L \tilde{x}=b$. Look for the missing part: $\tilde{x}=x+\Delta x$, then $A \Delta x=A \tilde{x}-b \equiv r$. Solve again $L \widetilde{\Delta x}=r$

and update $\tilde{\tilde{x}}=\tilde{x}-\widetilde{\Delta x} .$| iteration | 1 | 2 | 3 |
| :--- | :---: | :---: | :---: |
| x_{1} | 2.1000 | 2.0017 | 2.000028 |
| x_{2} | 1.1357 | 1.0023 | 1.000038 |
| x_{3} | 0.9833 | 0.9997 | 0.999995 |

Two decimals per iteration. This is not typical
Exact system solving: $O\left(n^{3}\right)$ cost; iteration: $O\left(n^{2}\right)$ per iteration. Potentially cheaper if the number of iterations is low.

Abstract presentation

- To solve $A x=b$; too expensive; suppose $K \approx A$ and solving $K x=b$ is possible
- Define $K x_{0}=b$, then error correction $x_{0}=x+e_{0}$, and $A\left(x_{0}-e_{0}\right)=b$
- so $A e_{0}=A x_{0}-b=r_{0}$; this is again unsolvable, so
- $K \tilde{e}_{0}$ and $x_{1}=x_{0}-\tilde{e}_{0}$.
- now iterate: $e_{1}=x_{1}-x, A e_{1}=A x_{1}-b=r_{1}$ et cetera

Error analysis

- One step

$$
\begin{align*}
r_{1} & =A x_{1}-b=A\left(x_{0}-\tilde{e}_{0}\right)-b \tag{1}\\
& =r_{0}-A K^{-1} r_{0} \tag{2}\\
& =\left(I-A K^{-1}\right) r_{0} \tag{3}
\end{align*}
$$

- Inductively: $r_{n}=\left(I-A K^{-1}\right)^{n} r_{0}$ so $r_{n} \downarrow 0$ if $\left|\lambda\left(I-A K^{-1}\right)\right|<1$ Geometric reduction (or amplification!)
- This is 'stationary iteration': every iteration step the same. Simple analysis, limited applicability.

Computationally

If

$$
A=K-N
$$

then

$$
A x=b \Rightarrow K x=N x+b \Rightarrow K x_{i+1}=N x_{i}+b
$$

Equivalent to the above, and you don't actually need to form the residual.

Choice of K

- The closer K is to A, the faster convergence.
- Diagonal and lower triangular choice mentioned above: let

$$
A=D_{A}+L_{A}+U_{A}
$$

be a splitting into diagonal, lower triangular, upper triangular part, then

- Jacobi method: $K=D_{A}$ (diagonal part),
- Gauss-Seidel method: $K=D_{A}+L_{A}$ (lower triangle, including diagonal)
- SOR method: $K=\omega D_{A}+L_{A}$

Jacobi

$$
K=D_{A}
$$

Algorithm:

$$
\begin{aligned}
& \text { for } k=1, \ldots \text { until convergence, do: } \\
& \qquad \begin{aligned}
& \text { for } i=1 \ldots n \text { : } \\
& / / a_{i i} x_{i}^{(k+1)}=\sum_{j \neq i} a_{i j} x_{j}^{(k)}+b_{i} \Rightarrow \\
& x_{i}^{(k+1)}=a_{i i}^{-1}\left(\sum_{j \neq i} a_{i j} x_{j}^{(k)}+b_{i}\right)
\end{aligned}
\end{aligned}
$$

Implementation:
for $k=1, \ldots$ until convergence, do:

$$
\text { for } i=1 \ldots n \text { : }
$$

$$
t_{i}=a_{i i}^{-1}\left(-\sum_{j \neq i} a_{i j} x_{j}+b_{i}\right)
$$

$$
\text { copy } x \leftarrow t
$$

Jacobi in pictures:

Gauss-Seidel

$$
K=D_{A}+L_{A}
$$

Algorithm:
for $k=1, \ldots$ until convergence, do:

$$
\text { for } i=1 \ldots n \text { : }
$$

$$
\begin{aligned}
& \left./ / a_{i i} x_{i}^{(k+1)}+\sum_{j<i} a_{i j} x_{j}^{(k+1)}\right)=\sum_{j>i} a_{i j} x_{j}^{(k)}+b_{i} \Rightarrow \\
& \left.x_{i}^{(k+1)}=a_{i i}^{-1}\left(-\sum_{j<i} a_{i j} x_{j}^{(k+1)}\right)-\sum_{j>i} a_{i j} x_{j}^{(k)}+b_{i}\right)
\end{aligned}
$$

Implementation:
for $k=1, \ldots$ until convergence, do:

$$
\begin{aligned}
& \text { for } i=1 \ldots n \text { : } \\
& \quad x_{i}=a_{i i}^{-1}\left(-\sum_{j \neq i} a_{i j} x_{j}+b_{i}\right)
\end{aligned}
$$

GS in pictures:

Choice of K through incomplete LU

- Inspiration from direct methods: let $K=L U \approx A$

Gauss elimination:
for $k, i, j:$

$$
a[i, j]=a[i, j]-a[i, k] * a[k, j] / a[k, k]
$$

Incomplete variant:
for k, i, j :
if $a[i, j]$ not zero:

$$
a[i, j]=a[i, j]-a[i, k] * a[k, j] / a[k, k]
$$

\Rightarrow sparsity of $L+U$ the same as of A

Stopping tests

When to stop converging? Can size of the error be guaranteed?

- Direct tests on error $e_{n}=x-x_{n}$ impossible; two choices
- Relative change in the computed solution small:

$$
\left\|x_{n+1}-x_{n}\right\| /\left\|x_{n}\right\|<\epsilon
$$

- Residual small enough:

$$
\left\|r_{n}\right\|=\left\|A x_{n}-b\right\|<\epsilon
$$

Without proof: both imply that the error is less than some other ϵ^{\prime}.

General form of iterative methods 1.

System $A x=b$ has the same solution as $K^{-1} A x=K^{-1} b$.
Let \tilde{x} be a guess and

$$
\tilde{r}=K^{-1} A \tilde{x}-K^{-1} b .
$$

then

$$
x=A^{-1} b=\tilde{x}-A^{-1} K \tilde{r}=\tilde{x}-\left(K^{-1} A\right)^{-1} \tilde{r} .
$$

A little linear algebra

Cayley-Hamilton theorem:

$$
A \text { nonsingular } \Rightarrow \exists_{\phi}: \phi(A)=0
$$

Write

$$
\phi(x)=1+x \pi(x),
$$

Apply this to $K^{-1} A$:

$$
0=\phi\left(K^{-1} A\right)=I+K^{-1} A \pi\left(K^{-1} A\right) \Rightarrow\left(K^{-1} A\right)^{-1}=-\pi\left(K^{-1} A\right)
$$

General form of iterative methods 2.

Recall

$$
x=\tilde{x}-\left(K^{-1} A\right)^{-1} \tilde{r} .
$$

Define iterates x_{i} and residuals $r_{i}=A x_{i}-b$, then $\tilde{r}=K^{-1} r_{0}$. Use Cayley-Hamilton:

$$
x=x_{0}-\pi\left(K^{-1} A\right) K^{-1} r_{0}=x_{0}-K^{-1} \pi\left(A K^{-1}\right) r_{0} .
$$

so that $x=\tilde{x}+\pi\left(K^{-1} A\right) \tilde{r}$. Now, if we let $x_{0}=\tilde{x}$, then
$\tilde{r}=K^{-1} r_{0}$, giving the equation

$$
x=x_{0}+\pi\left(K^{-1} A\right) K^{-1} r_{0}=x_{0}+K^{-1} \pi\left(A K^{-1}\right) r_{0} .
$$

Iterative scheme:

$$
\begin{equation*}
x_{i+1}=x_{0}+K^{-1} \pi^{(i)}\left(A K^{-1}\right) r_{0} \tag{4}
\end{equation*}
$$

Residuals

$$
x_{i+1}=x_{0}+K^{-1} \pi^{(i)}\left(A K^{-1}\right) r_{0}
$$

Multiply by A and subtract b :

$$
r_{i+1}=r_{0}+\tilde{\pi}^{(i)}\left(A K^{-1}\right) r_{0}
$$

So:

$$
r_{i}=\hat{\pi}^{(i)}\left(A K^{-1}\right) r_{0}
$$

where $\hat{\pi}^{(i)}$ is a polynomial of degree i with $\hat{\pi}^{(i)}(0)=1$.
\Rightarrow convergence theory

Juggling polynomials

For $i=1$:

$$
r_{1}=\left(\alpha_{1} A K^{-1}+\alpha_{2} /\right) r_{0} \Rightarrow A K^{-1} r_{0}=\beta_{1} r_{1}+\beta_{0} r_{0}
$$

for some values α_{i}, β_{i}.
For $i=2$

$$
r_{2}=\left(\alpha_{2}\left(A K^{-1}\right)^{2}+\alpha_{1} A K^{-1}+\alpha_{0}\right) r_{0}
$$

for different values α_{i}.
Together:

$$
\left(A K^{-1}\right)^{2} r_{0} \in \llbracket r_{2}, r_{1}, r_{0} \rrbracket
$$

and inductively

$$
\begin{equation*}
\left(A K^{-1}\right)^{i} r_{0} \in \llbracket r_{i}, \ldots, r_{0} \rrbracket . \tag{5}
\end{equation*}
$$

General form of iterative methods 3.

$$
x_{i+1}=x_{0}+\sum_{j \leq i} K^{-1} r_{j} \alpha_{j i}
$$

or equivalently:

$$
x_{i+1}=x_{i}+\sum_{j \leq i} K^{-1} r_{j} \alpha_{j i}
$$

More residual identities

$$
x_{i+1}=x_{i}+\sum_{j \leq i} K^{-1} r_{j} \alpha_{j i}
$$

gives

$$
r_{i+1}=r_{i}+\sum_{j \leq i} A K^{-1} r_{j} \alpha_{j i}
$$

Specifically

$$
r_{1}=r_{0}+A K^{-1} r_{0} \alpha_{00}
$$

so $A K^{-1} r_{0}=\alpha_{00}^{-1}\left(r_{1}-r_{0}\right)$.
Next:

$$
\begin{aligned}
r_{2} & =r_{1}+A K^{-1} r_{1} \alpha_{11}+A K^{-1} r_{0} \alpha_{01} \\
& =r_{1}+A K^{-1} r_{1} \alpha_{11}+\alpha_{00}^{-1} \alpha_{01}\left(r_{1}-r_{0}\right) \\
\Rightarrow A K^{-1} r_{1} & =\alpha_{11}^{-1}\left(r_{2}-\left(1+\alpha_{00}^{-1} \alpha_{01}\right) r_{1}+\alpha_{00}^{-1} \alpha_{01} r_{0}\right)
\end{aligned}
$$

so $A K^{-1} r_{1}=r_{2} \beta_{2}+r_{1} \beta_{1}+r_{0} \beta_{0}$, and that $\sum_{i} \beta_{i}=0$.

Inductively:

$$
\begin{array}{rlr}
r_{i+1} & =r_{i}+A K^{-1} r_{i} \delta_{i}+\sum_{j \leq i+1} r_{j} \alpha_{j i} \\
r_{i+1}\left(1-\alpha_{i+1, i}\right) & =A K^{-1} r_{i} \delta_{i}+r_{i}\left(1+\alpha_{i i}\right)+\sum_{j<i} r_{j} \alpha_{j i} \\
r_{i+1} \alpha_{i+1, i} & =A K^{-1} r_{i} \delta_{i}+\sum_{j \leq i} r_{j} \alpha_{j i} & \text { substituting } \quad \begin{array}{ll}
\alpha_{i i}:=1+\alpha_{i i} \\
\alpha_{i+1, i}:=1- \\
& \\
r_{i+1} \alpha_{i+1, i} \delta_{i}^{-1} & =A K^{-1} r_{i}+\sum_{j \leq i} r_{j} \alpha_{j i} \delta_{i}^{-1} \\
r_{i+1} \alpha_{i+1, i} \delta_{i}^{-1} & =A K^{-1} r_{i}+\sum_{j \leq i} r_{j} \alpha_{j i} \delta_{i}^{-1} \\
r_{i+1} \gamma_{i+1, i} & A K^{-1} r_{i}+\sum_{j \leq i} r_{j} \gamma_{j i}
\end{array} \quad \text { substituting } \gamma_{i j}=\alpha_{i j} \delta_{j}^{-1}
\end{array}
$$

and we have that $\gamma_{i+1, i}=\sum_{j \leq i} \gamma_{j i}$.

General form of iterative methods 4.

$$
r_{i+1} \gamma_{i+1, i}=A K^{-1} r_{i}+\sum_{j \leq i} r_{j} \gamma_{j i}
$$

and $\gamma_{i+1, i}=\sum_{j \leq i} \gamma_{j i}$.
Write this as $A K^{-1} R=R H$ where

$$
H=\left(\begin{array}{ccccc}
-\gamma_{11} & -\gamma_{12} & \ldots & & \\
\gamma_{21} & -\gamma_{22} & -\gamma_{23} & \ldots & \\
0 & \gamma_{32} & -\gamma_{33} & -\gamma_{34} & \\
\emptyset & \ddots & \ddots & \ddots & \ddots
\end{array}\right)
$$

H is a Hessenberg matrix, and note zero column sums.
Divide A out:

$$
x_{i+1} \gamma_{i+1, i}=K^{-1} r_{i}+\sum_{j \leq i} x_{j} \gamma_{j i}
$$

General form of iterative methods 5.

$$
\left\{\begin{array}{l}
r_{i}=A x_{i}-b \\
x_{i+1} \gamma_{i+1, i}=K^{-1} r_{i}+\sum_{j \leq i} x_{j} \gamma_{j i} \\
r_{i+1} \gamma_{i+1, i}=A K^{-1} r_{i}+\sum_{j \leq i} r_{j} \gamma_{j i}
\end{array}\right.
$$

$$
\text { where } \gamma_{i+1, i}=\sum_{j \leq i} \gamma_{j i}
$$

Orthogonality

Idea one:

> If you can make all your residuals orthogonal to each other, and the matrix is of dimension n, then after n iterations you have to have converged: it is not possible to have an $n+1$-st residuals that is orthogonal and nonzero.

Idea two:
The sequence of residuals spans a series of subspaces of increasing dimension, and by orthogonalizing the initial residual is projected on these spaces. This means that the errors will have decreasing sizes.

тАСС

Full Orthogonalization Method

Let r_{0} be given
For $i \geq 0$:
let $s \leftarrow K^{-1} r_{i}$
let $t \leftarrow A K^{-1} r_{i}$
for $j \leq i$:
let γ_{j} be the coefficient so that $t-\gamma_{j} r_{j} \perp r_{j}$ for $j \leq i$:
form $s \leftarrow s-\gamma_{j} x_{j}$
and $t \leftarrow t-\gamma_{j} r_{j}$
let $x_{i+1}=\left(\sum_{j} \gamma_{j}\right)^{-1} s, r_{i+1}=\left(\sum_{j} \gamma_{j}\right)^{-1} t$.

Modified Gramm-Schmidt

Let r_{0} be given
For $i \geq 0$:
let $s \leftarrow K^{-1} r_{i}$
let $t \leftarrow A K^{-1} r_{i}$
for $j \leq i$:
let γ_{j} be the coefficient so that $t-\gamma_{j} r_{j} \perp r_{j}$
form $s \leftarrow s-\gamma_{j} x_{j}$
and $t \leftarrow t-\gamma_{j} r_{j}$
let $x_{i+1}=\left(\sum_{j} \gamma_{j}\right)^{-1} s, r_{i+1}=\left(\sum_{j} \gamma_{j}\right)^{-1} t$.

Practical differences

- Modfied GS more stable
- Inner products are global operations: costly

Coupled recurrences form

$$
\begin{equation*}
x_{i+1}=x_{i}-\sum_{j \leq i} \alpha_{j i} K^{-1} r_{j} \tag{6}
\end{equation*}
$$

This equation is often split as

- Update iterate with search direction: direction:

$$
x_{i+1}=x_{i}-\delta_{i} p_{i}
$$

- Construct search direction from residuals:

$$
p_{i}=K^{-1} r_{i}+\sum_{j<i} \beta_{i j} K^{-1} r_{j}
$$

Inductively:

$$
p_{i}=K^{-1} r_{i}+\sum_{j<i} \gamma_{i j} p_{j}
$$

Conjugate Gradients

Basic idea:

$$
r_{i}^{t} K^{-1} r_{j}=0 \quad \text { if } i \neq j
$$

Split recurrences:

$$
\left\{\begin{array}{l}
x_{i+1}=x_{i}-\delta_{i} p_{i} \\
r_{i+1}=r_{i}-\delta_{i} A p_{i} \\
p_{i}=K^{-1} r_{i}+\sum_{j<i} \gamma_{i j} p_{j}
\end{array}\right.
$$

Symmetric Positive Definite case

Three term recurrence is enough:

$$
\left\{\begin{array}{l}
x_{i+1}=x_{i}-\delta_{i} p_{i} \\
r_{i+1}=r_{i}-\delta_{i} A p_{i} \\
p_{i+1}=K^{-1} r_{i+1}+\gamma_{i} p_{i}
\end{array}\right.
$$

Preconditioned Conjugate Gradietns

```
Compute \(r^{(0)}=b-A x^{(0)}\) for some initial guess \(x^{(0)}\)
for \(i=1,2, \ldots\)
    solve \(M z^{(i-1)}=r^{(i-1)}\)
    \(\rho_{i-1}=r^{(i-1)^{T}} z^{(i-1)}\)
    if \(i=1\)
        \(p^{(1)}=z^{(0)}\)
    else
        \(\beta_{i-1}=\rho_{i-1} / \rho_{i-2}\)
        \(p^{(i)}=z^{(i-1)}+\beta_{i-1} p^{(i-1)}\)
    endif
    \(q^{(i)}=A p^{(i)}\)
    \(\alpha_{i}=\rho_{i-1} / p^{(i)^{T}} q^{(i)}\)
    \(x^{(i)}=x^{(i-1)}+\alpha_{i} p^{(i)}\)
    \(r^{(i)}=r^{(i-1)}-\alpha_{i} q^{(i)}\)
    check convergence; continue if necessary
end
```


Observations on iterative methods

- Conjugate gradients: constant storage and inner products; works only for symmetric systems
- GMRES (like FOM): growing storage and inner products: restarting and numerical cleverness
- BiCGstab and QMR: relax the orthogonality

CG derived from minimization

Special case of SPD:
For which vector x with $\|x\|=1$ is $f(x)=1 / 2 x^{t} A x-b^{t} \times$ minimal?
Taking derivative:

$$
\begin{equation*}
f^{\prime}(x)=A x-b \tag{7}
\end{equation*}
$$

Update

$$
x_{i+1}=x_{i}+p_{i} \delta_{i}
$$

optimal value:

$$
\delta_{i}=\underset{\delta}{\operatorname{argmin}}\left\|f\left(x_{i}+p_{i} \delta\right)\right\|=\frac{r_{i}^{t} p_{i}}{p_{1}^{t} A p_{i}}
$$

Other constants follow from orthogonality.

