Numerical Linear Algebra: iterative methods

Victor Eijkhout

TA@@ Texas Advanced éé'r‘i{ﬁ‘i}‘%:]&'g"i:“é’ﬁ%’é'.f

Two different approaches
Solve Ax = b
Direct methods:
e Deterministic

e Exact up to machine precision

e Expensive (in time and space)
Iterative methods:

e Only approximate
e Cheaper in space and (possibly) time

e Convergence not guaranteed

I A@@ Intro sci/tech computing — 2

Iterative methods

Choose any xg and repeat

K = Bxk + ¢

+1_Xk||2
B[

k
until || x%+1 — x|, < € or until X <e€

I A@@ Intro sci/tech computing — 3

Example of iterative solution

Example system

10 0 1 X1 21
12 7 1] x]=1[9
1 0 6 X3 8

with solution (2,1,1).

Suppose you know (physics) that solution components are roughly
the same size, and observe the dominant size of the diagonal, then

10 X1 21
7 X2 = 9
6 X3 8

might be a good approximation: solution (2.1,9/7,8/6).

I A@@ Intro sci/tech computing — 4

Iterative example’

Example system

10 0 1 X1 21
12 7 1] [x|=[9
1 0 6 X3 8

with solution (2,1,1).

()6 ()

with solution (2.1,7.95/7,5.9/6).

Also easy to solve:

o~

I A@@ Intro sci/tech computing — 5

Iterative example”

Instead of solving Ax = b we solved LX = b. Look for the missing
part: X = x + Ax, then AAx = Ax — b =r. Solve again LAx =r

iteration 1 2 3
c .~ |x 21000 2.0017 2.000028
and update X =X — Ax. | 1.1357 1.0023 1.000038
X3 0.9833 0.0997 0.999995

Two decimals per iteration. This is not typical

Exact system solving: O(n3) cost; iteration: O(n?) per iteration.
Potentially cheaper if the number of iterations is low.

I A@@ Intro sci/tech computing — 6

Abstract presentation

e To solve Ax = b; too expensive; suppose K =~ A and solving
Kx = b is possible

e Define Kxg = b, then error correction xg = x + €y, and
A(XO — eo) =b

e so Aey = Axg — b = ry; this is again unsolvable, so

o K& and x; = xp — &.

e now iterate: e = x;1 — x, Ae;1 = Axy — b = n et cetera

I A@@ Intro sci/tech computing — 7

Error analysis

e One step
n = AX1—b:A(Xo—éo)—b (1)
= rn-— AKilro (2)
= (I-AK Y (3)

e Inductively: r, = (I —AK Yy so r, L 0 if [N(/ —AK™Y)| < 1
Geometric reduction (or amplification!)

e This is ‘stationary iteration’: every iteration step the same.
Simple analysis, limited applicability.

I A@@ Intro sci/tech computing — 8

Computationally

A=K-N

then
Ax=b= Kx=Nx+ b= Kxiy1 = Nx;+ b

Equivalent to the above, and you don't actually need to form the
residual.

I A@@ Intro sci/tech computing — 9

Choice of K

e The closer K is to A, the faster convergence.

e Diagonal and lower triangular choice mentioned above: let
A=Da+ Lo+ Up

be a splitting into diagonal, lower triangular, upper triangular
part, then

e Jacobi method: K = D4 (diagonal part),

e Gauss-Seidel method: K = Da + La (lower triangle, including
diagonal)

e SOR method: K =wDj + La

I A@@ Intro sci/tech computing — 10

Jacobi

K =Dgh
Algorithm:

for k =1, ... until convergence, do:
fori=1...n:
/2 = D ji aU)(J'(k) + b =
k+1 - k
Xi()= aiil(Zj;éi 3inj()4 bi)
Implementation:

for k =1, ... until convergence, do:
fori=1...n:
-1
ti = a; (=2 2% + bi)
copy x <t

I A@@ Intro sci/tech computing — 11

Jacobi in pictures:

o é ; 2 /\;/\
D G @ L o

I A@@ Intro sci/tech computing — 12

Gauss-Seidel

K =Da+ Ly
Algorithm:

for k =1, ... until convergence, do:
fori=1...n:

k+1 k+1 k
//aiixi(oy Yj<i 3inj(’)) =i 3,'J'Xj()+ bj =

k - k k
Xi(W= a;t(— Yj<i 3inj(H)) = 2jsi 3inj()+ b;)

Implementation:

for k =1, ... until convergence, do:
fori=1...n:

1
xi = a; (— Zj;éi ajjxj + b;)

I A@@ Intro sci/tech computing — 13

GS in pictures:

©e ;/\ . /) I
! | }
(D @ o‘/o o

I A@@ Intro sci/tech computing — 14

Choice of K through incomplete LU

e Inspiration from direct methods: let K = LU ~ A

Gauss elimination:

for k,i,j:
ali,jl = ali,jl - ali,k] * alk,j] / alk,kl]

Incomplete variant:
for k,i,j:
if ali,j] not zero:

ali,jl = ali,jl - ali,k] * alk,j] / alk,kl]

= sparsity of L + U the same as of A

I A@@ Intro sci/tech computing — 15

Stopping tests

When to stop converging? Can size of the error be guaranteed?

e Direct tests on error e, = x — x, impossible; two choices

o Relative change in the computed solution small:
IXn41 — Xall/lIxnl| < €

e Residual small enough:
Irall = [|Axa — bI| <€

Without proof: both imply that the error is less than some other ¢’.

I A@@ Intro sci/tech computing — 16

General form of iterative methods 1.

System Ax = b has the same solution as K~1Ax = K~ 1b.

Let X be a guess and

then

I A@@ Intro sci/tech computing — 17

A little linear algebra

Cayley-Hamilton theorem:
A nonsingular = 3;4: ¢(A) = 0.

Write
d(x) = 1+ x7m(x),

Apply this to K~LA:

0=p(KA) =1+ K 1Ar(K1A) = (KA = —n(K1A)

I A@@ Intro sci/tech computing — 18

General form of iterative methods 2.

Recall
x=5%— (K 1A%

Define iterates x; and residuals rj = Ax; — b, then ¥ = K™ 1r.
Use Cayley-Hamilton:

x=xp—m(KTAK g =x0 — K n(AK Hr.
so that x = % + m(K~tA)F. Now, if we let xg = X, then
7 = K~ 1ry, giving the equation

x=xp+m(KTAK g = x0 + K n(AK Hr.
Iterative scheme:

xir1 = x0 + K 1a(AKHr (4)

I A@@ Intro sci/tech computing — 19

Residuals

Xi+1 = Xo + K_lﬂ(i)(AK_l)ro
Multiply by A and subtract b:
rig1 =r + %(i)(AKfl)ro

So: '
ri = 20 (AK)r

where #() is a polynomial of degree i with #()(0) = 1.

= convergence theory

I A@@ Intro sci/tech computing — 20

Juggling polynomials

Fori=1:
rn = (a1 AK ™' + a2l)ro = AK g = Bir + Boro

for some values «;, 5;.

For i =2
rn = (OéQ(AKil)z + OélAKil + afo)ro

for different values «;.

Together:
(AK_1)2I’0 S [[r2, r, I’o]],

and inductively .
(AK—l)lroe I[rh"'arO]]' (5)

I A@@ Intro sci/tech computing — 21

General form of iterative methods 3.

-1
Xi+1 = Xo + § K™ rjaji.
J<i

or equivalently:

-1
Xiy1 = X; + E K rioi.
J<i

I A@@ Intro sci/tech computing — 22

More residual identities

-1
Xi+1 = X; + E K rici.

J<i
gives
rig1=1r+ ZAK_ll’jOzj,'.
J<i
Specifically

rn = ro+ AK ™ roagp.
so AK 1y = Oéaol(rl — ro).
Next:
rn =n+AK tron + AK oo
=+ AK a1 + agg aoi(n —)
= AKn = aij(n— (14 agao)n + ag aoth)

so AKtri = ryf32 + n By + rofo, and that Y-, i = 0.

I A@@ Intro sci/tech computing — 23

Inductively:

rit1 I’;+AKilri5i+Zj§i+1 rJ.O[J".
ris(l = aiv) = AKT IR0+ (1 + o) + 30 o
aji =1+ i
ait1,i =1 — ajy
note that ajy1,; = Z-<,~ Qi

fiiivy; = AK IR + > j<i hii substituting

J
-1 _ -1 -1
ripiaiyid; = AKTIn+ 30 oo
-1 _ -1 = -1
fivacipnid; - = AKTIG 4) nid;
—1 - . . _ —1
fig1vie1,i AK” i+ ngi rivji substituting v = a;j§j

and we have that vi41,; = Zj<;'7ji-

I A@@ Intro sci/tech computing — 24

General form of iterative methods 4.

fip1viei = AK i+) i

J<i
and Yiy1,i = > i< Vji-
Write this as AK~1R = RH where

711 —712
Y21 —7Y22 —723

H=1 o Y32 —Y33 34
0) .
H is a Hessenberg matrix, and note zero column sums.
Divide A out:

-1
Xit1Yieni = K+) xii
J<i

I A@@ Intro sci/tech computing — 25

General form of iterative methods 5.

ri = AX,' —b
_ k-1 . J— .
Xit1%i+1,i = K7 i + ZJ'S,'XJ"Vji where ;11 = ngi%/-
— -1
fiv1Yivt,i = AKT ri+ 30 i

I A@@ Intro sci/tech computing — 26

Orthogonality

Idea one:

If you can make all your residuals orthogonal to each
other, and the matrix is of dimension n, then after n
iterations you have to have converged: it is not possible
to have an n + 1-st residuals that is orthogonal and
nonzero.

Idea two:

The sequence of residuals spans a series of subspaces of
increasing dimension, and by orthogonalizing the initial
residual is projected on these spaces. This means that
the errors will have decreasing sizes.

I A@@ Intro sci/tech computing — 27

_H t1+urm

I A@@ Intro sci/tech computing — 28

Full Orthogonalization Method

Let ry be given
For i > 0:
let s + K~ 1r;
let t +— AK1r;
for j < i:
let y; be the coefficient so that t — ~y;rj L r;
for j < i:
form s <— s — y;x;
and t < t—jr;
let xiy1 = (3;)~"s, rivn = (30 %) 't

I A@@ Intro sci/tech computing — 29

Modified Gramm-Schmidt

Let ry be given
For i > 0:
let s «+ K~ 1r;
let t < AK 1r;
forj <i:
let y; be the coefficient so that t — ~y;r; L r;
form s <— s — y;x;
and t < t—jr;
let xiv1 = (32;7) 'S, rivn = () 't

I A@@ Intro sci/tech computing — 30

Practical differences

e Modfied GS more stable

e Inner products are global operations: costly

I A@@ Intro sci/tech computing — 31

Coupled recurrences form

Xiy1 = Xj — Z iK™t (6)
J<i
This equation is often split as
o Update iterate with search direction: direction:
Xi+1 = Xj — 0ipj,

e Construct search direction from residuals:

-1 _

pi =K fi+25in '
J<i
Inductively:
-1
pi=K i+ vip,

Jj<i

I A@@ Intro sci/tech computing — 32

Conjugate Gradients

Basic idea:
Kt =0 ifi#j.

Split recurrences:
Xit1 = Xj — Oipi
riv1 = ri — 0;Ap;
pi =K+ vip,

I A@@ Intro sci/tech computing — 33

Symmetric Positive Definite case

Three term recurrence is enough:

Xit1 = Xj — Oipi
fiv1 = ri — 0;Ap;i
piy1 =K triy1 +7ipi

I A@@ Intro sci/tech computing — 34

Preconditioned Conjugate Gradietns

Compute r® = b — Ax(©) for some initial guess x(%)
for i=1,2,...
solve Mz(i=1) = f(
oy = P17)
ifi=1
1) — 50
else
Bi—1 = Pifl/pi72
o) = A1) 4 g pl-D)
endif
) = Apl)
a; = pi—1/pD" g
X = x50 4 g p(0)
P = 1) D)

i—1)

check convergence; continue if necessary
end

I A@@ Intro sci/tech computing — 35

Observations on iterative methods

e Conjugate gradients: constant storage and inner products;
works only for symmetric systems

e GMRES (like FOM): growing storage and inner products:
restarting and numerical cleverness

e BiCGstab and QMR: relax the orthogonality

I A@@ Intro sci/tech computing — 36

CG derived from minimization
Special case of SPD:

For which vector x with ||x| =1 is f(x) = 1/2x*Ax — b'x minimal?

(7)

Taking derivative:
f'(x) = Ax — b.

Update
Xi41 = Xj + pi0;
optimal value:
r,'tPi
piApi

§; = argmin ||f(x; + pid)|| =
1)

Other constants follow from orthogonality.

I A@@ Intro sci/tech computing — 37

