
Numerical Linear Algebra: iterative methods

Victor Eijkhout

Two different approaches
Solve Ax = b

Direct methods:

• Deterministic

• Exact up to machine precision

• Expensive (in time and space)

Iterative methods:

• Only approximate

• Cheaper in space and (possibly) time

• Convergence not guaranteed

Intro sci/tech computing — 2

Iterative methods

Choose any x0 and repeat

xk+1 = Bxk + c

until ‖xk+1 − xk‖2 < ε or until ‖x
k+1−xk‖2
‖xk‖ < ε

Intro sci/tech computing — 3

Example of iterative solution
Example system  10 0 1

1/2 7 1
1 0 6

x1
x2
x3

 =

21
9
8


with solution (2, 1, 1).

Suppose you know (physics) that solution components are roughly
the same size, and observe the dominant size of the diagonal, then10

7
6

x1
x2
x3

 =

21
9
8


might be a good approximation: solution (2.1, 9/7, 8/6).

Intro sci/tech computing — 4

Iterative example′
Example system  10 0 1

1/2 7 1
1 0 6

x1
x2
x3

 =

21
9
8


with solution (2, 1, 1).

Also easy to solve: 10
1/2 7

1 0 6

x1
x2
x3

 =

21
9
8


with solution (2.1, 7.95/7, 5.9/6).

Intro sci/tech computing — 5

Iterative example′′

Instead of solving Ax = b we solved Lx̃ = b. Look for the missing
part: x̃ = x + ∆x , then A∆x = Ax̃ − b ≡ r . Solve again L∆̃x = r

and update ˜̃x = x̃ − ∆̃x .

iteration 1 2 3
x1 2.1000 2.0017 2.000028
x2 1.1357 1.0023 1.000038
x3 0.9833 0.9997 0.999995

Two decimals per iteration. This is not typical

Exact system solving: O(n3) cost; iteration: O(n2) per iteration.
Potentially cheaper if the number of iterations is low.

Intro sci/tech computing — 6

Abstract presentation

• To solve Ax = b; too expensive; suppose K ≈ A and solving
Kx = b is possible

• Define Kx0 = b, then error correction x0 = x + e0, and
A(x0 − e0) = b

• so Ae0 = Ax0 − b = r0; this is again unsolvable, so

• K ẽ0 and x1 = x0 − ẽ0.

• now iterate: e1 = x1 − x , Ae1 = Ax1 − b = r1 et cetera

Intro sci/tech computing — 7

Error analysis

• One step

r1 = Ax1 − b = A(x0 − ẽ0)− b (1)

= r0 − AK−1r0 (2)

= (I − AK−1)r0 (3)

• Inductively: rn = (I −AK−1)nr0 so rn ↓ 0 if |λ(I −AK−1)| < 1
Geometric reduction (or amplification!)

• This is ‘stationary iteration’: every iteration step the same.
Simple analysis, limited applicability.

Intro sci/tech computing — 8

Computationally

If
A = K − N

then
Ax = b ⇒ Kx = Nx + b ⇒ Kxi+1 = Nxi + b

Equivalent to the above, and you don’t actually need to form the
residual.

Intro sci/tech computing — 9

Choice of K

• The closer K is to A, the faster convergence.

• Diagonal and lower triangular choice mentioned above: let

A = DA + LA + UA

be a splitting into diagonal, lower triangular, upper triangular
part, then

• Jacobi method: K = DA (diagonal part),

• Gauss-Seidel method: K = DA + LA (lower triangle, including
diagonal)

• SOR method: K = ωDA + LA

Intro sci/tech computing — 10

Jacobi

K = DA

Algorithm:

for k = 1, . . . until convergence, do:
for i = 1 . . . n:

//aiix
(k+1)
i =

∑
j 6=i aijx

(k)
j + bi ⇒

x
(k+1)
i = a−1ii (

∑
j 6=i aijx

(k)
j + bi)

Implementation:

for k = 1, . . . until convergence, do:
for i = 1 . . . n:

ti = a−1ii (−
∑

j 6=i aijxj + bi)

copy x ← t

Intro sci/tech computing — 11

Jacobi in pictures:

Intro sci/tech computing — 12

Gauss-Seidel

K = DA + LA

Algorithm:

for k = 1, . . . until convergence, do:
for i = 1 . . . n:

//aiix
(k+1)
i +

∑
j<i aijx

(k+1)
j) =

∑
j>i aijx

(k)
j + bi ⇒

x
(k+1)
i = a−1ii (−

∑
j<i aijx

(k+1)
j)−

∑
j>i aijx

(k)
j + bi)

Implementation:

for k = 1, . . . until convergence, do:
for i = 1 . . . n:

xi = a−1ii (−
∑

j 6=i aijxj + bi)

Intro sci/tech computing — 13

GS in pictures:

Intro sci/tech computing — 14

Choice of K through incomplete LU
• Inspiration from direct methods: let K = LU ≈ A

Gauss elimination:

for k,i,j:

a[i,j] = a[i,j] - a[i,k] * a[k,j] / a[k,k]

Incomplete variant:

for k,i,j:

if a[i,j] not zero:

a[i,j] = a[i,j] - a[i,k] * a[k,j] / a[k,k]

⇒ sparsity of L + U the same as of A

Intro sci/tech computing — 15

Stopping tests

When to stop converging? Can size of the error be guaranteed?

• Direct tests on error en = x − xn impossible; two choices

• Relative change in the computed solution small:

‖xn+1 − xn‖/‖xn‖ < ε

• Residual small enough:

‖rn‖ = ‖Axn − b‖ < ε

Without proof: both imply that the error is less than some other ε′.

Intro sci/tech computing — 16

General form of iterative methods 1.

System Ax = b has the same solution as K−1Ax = K−1b.

Let x̃ be a guess and

r̃ = K−1Ax̃ − K−1b.

then
x = A−1b = x̃ − A−1K r̃ = x̃ − (K−1A)−1r̃ .

Intro sci/tech computing — 17

A little linear algebra

Cayley-Hamilton theorem:

A nonsingular⇒ ∃φ : φ(A) = 0.

Write
φ(x) = 1 + xπ(x),

Apply this to K−1A:

0 = φ(K−1A) = I + K−1Aπ(K−1A)⇒ (K−1A)−1 = −π(K−1A)

Intro sci/tech computing — 18

General form of iterative methods 2.
Recall

x = x̃ − (K−1A)−1r̃ .

Define iterates xi and residuals ri = Axi − b, then r̃ = K−1r0.

Use Cayley-Hamilton:

x = x0 − π(K−1A)K−1r0 = x0 − K−1π(AK−1)r0.

so that x = x̃ + π(K−1A)r̃ . Now, if we let x0 = x̃ , then
r̃ = K−1r0, giving the equation

x = x0 + π(K−1A)K−1r0 = x0 + K−1π(AK−1)r0.

Iterative scheme:

xi+1 = x0 + K−1π(i)(AK−1)r0 (4)

Intro sci/tech computing — 19

Residuals

xi+1 = x0 + K−1π(i)(AK−1)r0

Multiply by A and subtract b:

ri+1 = r0 + π̃(i)(AK−1)r0

So:
ri = π̂(i)(AK−1)r0

where π̂(i) is a polynomial of degree i with π̂(i)(0) = 1.

⇒ convergence theory

Intro sci/tech computing — 20

Juggling polynomials
For i = 1:

r1 = (α1AK−1 + α2I)r0 ⇒ AK−1r0 = β1r1 + β0r0

for some values αi , βi .

For i = 2
r2 = (α2(AK−1)2 + α1AK−1 + α0)r0

for different values αi .

Together:
(AK−1)2r0 ∈ [[r2, r1, r0]],

and inductively
(AK−1)i r0 ∈ [[ri , . . . , r0]]. (5)

Intro sci/tech computing — 21

General form of iterative methods 3.

xi+1 = x0 +
∑
j≤i

K−1rjαji .

or equivalently:

xi+1 = xi +
∑
j≤i

K−1rjαji .

Intro sci/tech computing — 22

More residual identities

xi+1 = xi +
∑
j≤i

K−1rjαji .

gives

ri+1 = ri +
∑
j≤i

AK−1rjαji .

Specifically
r1 = r0 + AK−1r0α00.

so AK−1r0 = α−100 (r1 − r0).

Next:

r2 = r1 + AK−1r1α11 + AK−1r0α01

= r1 + AK−1r1α11 + α−100 α01(r1 − r0)

⇒ AK−1r1 = α−111 (r2 − (1 + α−100 α01)r1 + α−100 α01r0)

so AK−1r1 = r2β2 + r1β1 + r0β0, and that
∑

i βi = 0.

Intro sci/tech computing — 23

Inductively:

ri+1 = ri + AK−1riδi +
∑

j≤i+1 rjαji

ri+1(1− αi+1,i) = AK−1riδi + ri (1 + αii) +
∑

j<i rjαji

ri+1αi+1,i = AK−1riδi +
∑

j≤i rjαji substituting
αii := 1 + αii

αi+1,i := 1− αi+1,i

note that αi+1,i =
∑

j≤i αji

ri+1αi+1,iδ
−1
i = AK−1ri +

∑
j≤i rjαjiδ

−1
i

ri+1αi+1,iδ
−1
i = AK−1ri +

∑
j≤i rjαjiδ

−1
i

ri+1γi+1,i AK−1ri +
∑

j≤i rjγji substituting γij = αijδ
−1
j

and we have that γi+1,i =
∑

j≤i γji .

Intro sci/tech computing — 24

General form of iterative methods 4.

ri+1γi+1,i = AK−1ri +
∑
j≤i

rjγji

and γi+1,i =
∑

j≤i γji .

Write this as AK−1R = RH where

H =


−γ11 −γ12 . . .
γ21 −γ22 −γ23 . . .
0 γ32 −γ33 −γ34
∅ . . .

. . .
. . .

. . .


H is a Hessenberg matrix, and note zero column sums.

Divide A out:
xi+1γi+1,i = K−1ri +

∑
j≤i

xjγji

Intro sci/tech computing — 25

General form of iterative methods 5.


ri = Axi − b

xi+1γi+1,i = K−1ri +
∑

j≤i xjγji

ri+1γi+1,i = AK−1ri +
∑

j≤i rjγji

where γi+1,i =
∑

j≤i γji .

Intro sci/tech computing — 26

Orthogonality
Idea one:

If you can make all your residuals orthogonal to each
other, and the matrix is of dimension n, then after n
iterations you have to have converged: it is not possible
to have an n + 1-st residuals that is orthogonal and
nonzero.

Idea two:

The sequence of residuals spans a series of subspaces of
increasing dimension, and by orthogonalizing the initial
residual is projected on these spaces. This means that
the errors will have decreasing sizes.

Intro sci/tech computing — 27

Intro sci/tech computing — 28

Full Orthogonalization Method

Let r0 be given
For i ≥ 0:

let s ← K−1ri
let t ← AK−1ri
for j ≤ i :

let γj be the coefficient so that t − γj rj ⊥ rj
for j ≤ i :

form s ← s − γjxj
and t ← t − γj rj

let xi+1 = (
∑

j γj)
−1s, ri+1 = (

∑
j γj)

−1t.

Intro sci/tech computing — 29

Modified Gramm-Schmidt

Let r0 be given
For i ≥ 0:

let s ← K−1ri
let t ← AK−1ri
for j ≤ i :

let γj be the coefficient so that t − γj rj ⊥ rj
form s ← s − γjxj
and t ← t − γj rj

let xi+1 = (
∑

j γj)
−1s, ri+1 = (

∑
j γj)

−1t.

Intro sci/tech computing — 30

Practical differences

• Modfied GS more stable

• Inner products are global operations: costly

Intro sci/tech computing — 31

Coupled recurrences form

xi+1 = xi −
∑
j≤i

αjiK
−1rj (6)

This equation is often split as

• Update iterate with search direction: direction:

xi+1 = xi − δipi ,

• Construct search direction from residuals:

pi = K−1ri +
∑
j<i

βijK
−1rj .

Inductively:

pi = K−1ri +
∑
j<i

γijpj ,

Intro sci/tech computing — 32

Conjugate Gradients

Basic idea:
r ti K−1rj = 0 if i 6= j .

Split recurrences: 
xi+1 = xi − δipi

ri+1 = ri − δiApi

pi = K−1ri +
∑

j<i γijpj ,

Intro sci/tech computing — 33

Symmetric Positive Definite case

Three term recurrence is enough:
xi+1 = xi − δipi

ri+1 = ri − δiApi

pi+1 = K−1ri+1 + γipi

Intro sci/tech computing — 34

Preconditioned Conjugate Gradietns

Compute r (0) = b − Ax (0) for some initial guess x (0)

for i = 1, 2, . . .
solve Mz (i−1) = r (i−1)

ρi−1 = r (i−1)T z (i−1)

if i = 1
p(1) = z (0)

else
βi−1 = ρi−1/ρi−2

p(i) = z (i−1) + βi−1p(i−1)

endif
q(i) = Ap(i)

αi = ρi−1/p(i)T q(i)

x (i) = x (i−1) + αip
(i)

r (i) = r (i−1) − αiq
(i)

check convergence; continue if necessary
end

Intro sci/tech computing — 35

Observations on iterative methods

• Conjugate gradients: constant storage and inner products;
works only for symmetric systems

• GMRES (like FOM): growing storage and inner products:
restarting and numerical cleverness

• BiCGstab and QMR: relax the orthogonality

Intro sci/tech computing — 36

CG derived from minimization
Special case of SPD:

For which vector x with ‖x‖ = 1 is f (x) = 1/2x tAx − btx minimal?
(7)

Taking derivative:
f ′(x) = Ax − b.

Update
xi+1 = xi + piδi

optimal value:

δi = argmin
δ
‖f (xi + piδ)‖ =

r ti pi

pt
1Api

Other constants follow from orthogonality.

Intro sci/tech computing — 37

