
1

1

Programming with vector instructions

■  SIMD = Single Instruction stream, Multiple Data stream
–  From Flynn’s taxonomy: SISD, SIMD, (MISD), MIMD

■  Extensions to the Intel and AMD x86 instruction set for parallel
operations on packed integer or floating-point data
–  data parallelism
–  parallel vector operations
–  applies the same operation in parallel on a number of data items packed

into a 64-, 128- or 256-bit vector
–  also supports scalar operations on integer or floating-point values

■  Originally designed to speed up media processing applications
–  can also be very useful in scientific computations and other numerically

intensive applications
■  There are many different versions of SIMD extensions

–  MMX, SSE, SSE2, SSE3, SSE4, 3DNow!, Altivec, VIS, AVX, AVX2, ...

2

MMX, SSE and AVX
■  Extensions to the IA-32 and x86-64 instruction sets for parallel SIMD

operations on packed data
■  MMX – Multimedia Extensions

–  introduced in the Pentium processor 1993
–  64-bit vector registers
–  supports only integer operations, not used much any more

■  SSE – Streaming SIMD Extension
–  introduced in Pentium III 1999, supported by most modern processors
–  128 bit vector registers
–  support for single-precision floating point operations
–  SSE2 – Streaming SIMD Extension 2 was introduced in Pentium 4, 2000
–  also supports double-precision floating point operations
–  later extensions: SSE3, SSSE3, SSE4.1, SSE4.2

■  AVX – Advanced Vector Extensions
–  announced in 2008, supported in the Intel Sandy Bridge processors, and later
–  extends the vector registers to 256 bits

2

Vector extensions
■  The vector instructions have been introduced and gradually extended

in multiple processor generations
–  the SSE extensions together include over 400 instructions

■  We will cover programming with the SSE family of vector instructions
–  available in most modern processors
–  uses 16 dedicated registers of length 128 bits
–  programming with AVX is similar, vector length and instruction names

differ

3

MMX

SSE2
SSE SSE3

SSSE3

SSSE4.1

SSSE4.2

AVX

1997 1999 2001 2011

SSE

4

Characteristics of SIMD operations

■  The SIMD extensions were originally designed to speed up multimedia and
communication applications
–  graphics and image processing
–  video and audio processing
–  speech recognition, …

■  Can also be used for other data-intensive scientific computations

■  Applications can benefit from SIMD processing if they have the following
characteristics
–  small integer or floating-point data types
–  small, highly repetitive loops
–  frequent additions, multiplications or other simple operations
–  compute-intense algorithms
–  data-parallelism, can operate on independent values in parallel

3

5

SIMD operation

■  SIMD execution
–  performs an operation in parallel on an array of 2, 4, 8,16 or 32 values,

depending on the size of the values
–  data parallel operation

■  The operation ⊗ can be a
–  data movement instruction
–  arithmetic instruction
–  logical instruction
–  comparison instruction
–  conversion instruction
–  shuffle instruction

X0 X1 X2 X3 Source 1

Y0 Y1 Y2 Y3 Source 2

X0⊗Y0 X1⊗Y1 X2⊗Y2 X3⊗Y3 Destination

⊗ ⊗ ⊗ ⊗

6

MMX
■  Introduced in the Pentium processor 1997
■  Uses 8 64-bit MMX registers which

are aliased to the x87 floating-point
registers
–  can store 1, 2, 4 or 8 packed

integer values
■  MMX registers can only hold integer data

–  not memory addresses
–  the general-purpose registers are used

 for addresses
■  Can not use the x87 floating-point unit and the MMX unit at the same time

–  they share the same set of registers
■  MMX operations are limited to integer values

–  the SSE and AVX extensions also provide operations on floating-point data
■  MMX is seldom used any more in modern processors

–  SSE or AVX is used instead

0 63
MM7
MM6
MM5
MM4
MM3
MM2
MM1
MM0

Floating-point registers

MMX registers

4

7

SSE

■  Streaming SIMD Extension
–  introduced with the Pentium III processor 1999
–  supports single-precision floating point operations (not double precision)

■  Adds 8 or 16 dedicated 128-bit vector registers to the processor
architecture
–  called XMM0 – XMM15

■  Parallel operations on packed single precision floating-point values
–  128-bit packed single precision floating point data type

–  four IEEE 32-bit floating point values packed into a 128-bit field
–  data must be aligned in memory on 16-byte boundaries

s0 s1 s2 s3
0 127

8

SSE2

■  Streaming SIMD Extension 2
–  introduced in the Pentium 4 processor 2001
–  extends SSE and replaces the MMX integer vector instructions

■  Extends SSE with support for
–  packed double precision floating point-values
–  packed integer values
–  adds over 70 new instructions to the instruction set

■  Operates on 128-bit entities in the XMM registers
–  data must be aligned on 16-bit boundaries when stored in memory
–  the restrictions on alignment were later relaxed

•  unaligned load/store instructions were introduced

5

AVX

■  Advanced Vector Extensions
–  introduced in the Sandy Bridge microarchitecture in 2011

■  Extends the vector registers to 256 bits
–  called YMM0 – YMM15
–  SSE instructions operate on the lower half of the YMM registers

■  Introduces new three-operand instructions
–  one destination and two source operands: c = a ⊗ b

■  AVX-512 will be supported in the Knights landing microarchitecture

–  scheduled to be shipped in 2015 according to Intel
■  The Intel Xeon Phi processor supports a 512-bit vector processing unit

–  not compatible with SSE or AVX

9

10

SSE vector registers
■  SSE introduced a set of new 128-bit vector registers

–  8 XMM registers in 32-bit mode
–  16 XMM registers in 64-bit mode

■  The XMM registers are real physical registers
–  not aliased to any other registers
–  independent of the general purpose and

FPU/MMX registers
■  XMM registers can be accessed in 32-bit,

64-bit or 128-bit mode
–  only for operations on data, not addresses

■  There is also a 32 bit control and status register,
called MXCSR

–  flag and mask bits for floating-point exceptions
–  rounding control bits
–  flush-to-zero bit
–  denormals-are-zero bit

XMM7
XMM6
XMM5
XMM4
XMM3
XMM2
XMM1
XMM0

0 127
XMM15
XMM14
XMM13
XMM12
XMM11
XMM10
XMM9
XMM8

6

11

SSE instructions
■  The original SSE extension added 70 new instructions to the instruction set

–  50 for SIMD single-precision floating-point operations
–  12 for SIMD integer operations
–  8 for cache control
–  later extensions added more instructions

■  Supports both packed and scalar single precision floating-point instructions
–  operations on packed 32-bit floating-point values

•  packed instructions have a suffix P
–  operations on a scalar 32-bit floating-point value (the 32 LSB)

•  scalar instructions have a suffix S

■  Also included some 64-bit SIMD integer instructions
–  replaces similar MMX instructions
–  operations on packed integer values stored in MMX registers

12

Packed and scalar operations

■  Packed SSE operations apply an
operation in parallel on 2 or 4 floating-
point values

■  Scalar SSE operations apply
an operation on a single (scalar)
floating-point value

■  The compilers use scalar SSE
instructions for floating-point operations
instead of the x87 floating point unit

X0 X1 X2 X3 Source 1

Y0 Y1 Y2 Y3 Source 2

X0⊗Y0 X1⊗Y1 X2⊗Y2 X3⊗Y3 Destination

⊗ ⊗ ⊗ ⊗

X0 X1 X2 X3 Source 1

Y0 Y1 Y2 Y3 Source 2

X0⊗Y0 X1 X2 X3 Destination

⊗

7

13

SSE vector data types
■  2 double precision floating-point values

–  elements are of type double

■  4 single precision floating-point values
–  elements are of type float

■  2 64-bit integer values

–  elements are of type long long

■  4 32-bit integer values
–  elements are of type int

■  8 16-bit integer values

–  elements are of type short int

■  16 8-bit integer values
–  elements are of type char

d0 d1
0 127

i0 i1
0 127

0 127
f2 f1 f0 f3

0 127
i0 i1 i2 i3 i4 i5 i6 i7

0 127
2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1

0 127
i2 i1 i0 i3

14

Programming with vector instructions

■  There are different ways to use vector instructions in a program

1.  Automatic vectorization by the compiler
–  no explicit vectorized programming is needed, but requires a vectorizing compiler
–  have to arrange the code so that the compiler can recognize possibilities for

vectorization

2.  Express the computation as arithmetic expressions on vector data types
–  declare variables of a vector type
–  express computations as normal arithmetic expression on the vector variables
–  the compiler generates vector instructions for the arithmetic operations

3.  Use compiler intrinsic functions for vector operations

–  functions that implement vector instructions in a high-level language
–  requires detailed knowledge of the vector instructions
–  one function often implements one vector assembly language instruction

8

15

Automatic vectorization

■  Requires a compiler with vectorizing capabilities
–  in gcc, vectorization is enabled by –O3
–  the Intel compiler, icc, can also do advanced vectorization

■  The compiler automatically recognizes loops that can be implemented with
vectorized code
–  easy to use, no changes to the program code are needed

■  Only loops that can be analyzed and that are found to be suitable for SIMD
execution are vectorized
–  does not guarantee that the code will be vectorized
–  has no effect if the compiler can not analyze the code and find opportunities for

vector operations
■  Pointers to vector arguments should be declared with the keyword restrict

–  guarantees that there are no aliases to the vectors
■  Arrays that used in vector operations should be 16-byte aligned

–  this will automatically be the case if they are dynamically allocated

16

Example: SAXPY procedure

■  SAXPY (Single-precision Alpha X Plus Y)
–  computes Y = αX+Y, where α is a scalar value and X and Y are vectors of single-

precision type
–  one of the vector operation in the BLAS library (Basic Linear Algebra Subprograms)

■  The vectorized code will do the computation on 4 values at a time
–  multiplies four values of X with alpha
–  adds the results to the corresponding four values of Y

void saxpy(int n, float alpha, float *X, float *Y) {!
 int i;!
 for (i=0; i<n; i++)!
 Y[i] = alpha*X[i] + Y[i];!
}!

Y

X

α α α α
*	

+	

9

17

Using compiler vectorization

■  Use the compiler switches –O3 and -ftree-vectorizer-verbose=1 to see reports
about which loops were vectorized
–  a higher value gives more verbose output
–  the verbosity level 2 also prints out reasons why loops are not vectorized

■  Vector elements should be aligned to 16 bytes
–  access to unaligned vector elements will fail

■  Aliasing may prevent the compiler from doing vectorization
–  pointers to vector data should be declared with the restric keyword

gcc -O3 -ftree-vectorizer-verbose=1 saxpy1.c -o saxpy1!
!
Analyzing loop at saxpy1.c:16!
Vectorizing loop at saxpy1.c:16!
16: created 1 versioning for alias checks.!
16: LOOP VECTORIZED.!
saxpy1.c:14: note: vectorized 1 loops in function.!

X

18

Explicit arithmetic operations on vector data types

■  Declare variables of vector data types and express the computations with
normal arithmetic expressions
–  the arithmetic operations (+, –, *, etc.) are overloaded with the corresponding

vector operations

■  Note that the number of operations in the loop now is n/4
–  x_ptr[i] and y_ptr[i] are vectors of 4 floating-point values
–  the compiler recognizes that alpha is a scalar value

void saxpy(int n, float alpha, float *X, float *Y) {!
 __m128 *x_ptr, *y_ptr; /* Pointers to vectors */!
 int i;!
 x_ptr = (__m128 *) X; /* Set pointers to the data */!
 y_ptr = (__m128 *) Y;!
 for (i=0; i<n/4; i++) {!
 y_ptr[i] = alpha*x_ptr[i] + y_ptr[i]; /* Do the computation */!
 }!
}!

x_ptr

0 1 2 3

10

19

Vector data types

■  The vector data types are defined in separate header files
–  depends on which vector extension is used

■  Vector data types in SSE

–  __m128: four 32-bit floating-point values
–  __m128d: two 64-bit floating-point values
–  __m128i: 16 / 8 / 4 / 2 integer values, depending on the size of the integers

Instruction set Header file Registers Length (bits)
MMX mmintrin.h MMX 64

SSE xmmintrin.h XMM 128

SSE2 emmintrin.h XMM 128

SSE3 pmmintrin-h XMM 128

SSE4.2 nmmintrin.h XMM 128

AVX immintrin.h YMM 256

8-bit integers 16-bit integers 32-bit integers 64-bit integers

20

Using compiler intrinsic functions

■  Functions for performing vector operations on packed data
–  implemented as functions which call the corresponding vector instructions
–  implemented with inline assembly code
–  allows the programmer to use C function calls and variables

■  Defines a separate C function for each vector instruction
–  there are also some intrinsic functions composed of several vector instructions

■  Vectorized programming with intrinsic functions is very low-level
–  have to exactly specify the operations that should be done on the vector values

■  Operate on the vector data types __m128, __m128d and __m128i
■  Often used for vector operations that can not be expressed as normal

arithmetic operations
–  loading and storing of vectors, shuffle operations, type conversions, masking

operations, …

11

21

SAXPY with vector intrinsic functions

■  Declare vector variables of the appropriate type
■  Load data values into the variables
■  Do arithmetic operations on the vector variables by calling intrinsic functions

–  it is possible to nest calls to intrinsic functions (they normally return a vector value)
–  can also use normal arithmetic expressions on the vector variables

■  Load and store operations require that data is 16-byte aligned

–  there are also corresponding functions for unaligned load/store:
_mm_loadu_ps and _mm_storeu_ps

void saxpy(int n, float alpha, float *X, float *Y) {!
 __m128 x_vec, y_vec, a_vec, res_vec; /* Vector variables */!
 int i;!
 a_vec = _mm_set1_ps(alpha); /* Vector of 4 alpha values */!
 for (i=0; i<n; i+=4) {!
 x_vec = _mm_load_ps(&X[i]); /* Load 4 values from X */!
 y_vec = _mm_load_ps(&Y[i]); /* Load 4 values from Y */!
 res_vec = _mm_add_ps(_mm_mul_ps(a_vec, x_vec), y_vec); /* Compute */!
 _mm_store_ps(&Y[i], res_vec); /* Store the result */!
 }!
}!

22

Vector instructions
■  Arithmetic intrinsic functions have a mnemonic name that tries to describe the

operation
–  the function name starts with _mm
–  after that follows a name describing the operation: add, mul, div, load, set, …
–  the next character specifies whether the operation is on a packed vector or on a

scalar vaue: P stands for Packed and S for Scalar operation
–  the last character describes the data type

•  S – single precision floating point values
•  D – double precision floating point values

■  Examples:
–  _mm_load_ps – load packed single-precision floating-point values

_mm_add_sd – add scalar double precision values
_mm_rsqrt_ps – reciprocal square root of four single-precision fp values
_mm_min_pd – minimum of the two double-precision fp values in the arguments
_mm_set1_pd – set the two double-precision elements to some value

12

23

Vectorizing conditional constructs
■  The compiler will typically not be able to vectorize loops containing

conditional constructs
■  Example: conditionally assign an integer value to A[i] depending on some

other value B[i]

■  This can be vectorized by first computing a Boolean mask which contains the
result of the comparison: mask[i] = (B[i] > 0)
–  then the assignment can be expressed as

 A[i] = (C[i] && mask) || (D[i] && ¬mask)
where the logical operations AND (&&), OR (||) and NOT (¬) are done bitwise

for (i=0; i<N; i++) {!
 if (B[i] > 0)!
 A[i] = C[i];!
 else !
 A[i] = D[i];!
}!

// A, B, C and D are integer arrays!
for (i=0; i<N; i++) {!
 A[i] = (B[i] > 0) ? (C[i]) : (D[i]);!
}!

24

Example
■  As an example we vectorize the following (slightly modified) code

 for (i=0; i<N; i++) {!
 A[i] = (B[i] > 0) ? (C[i]+2) : (D[i]+10);!
 }!

__m128i zero_vec = _mm_set1_epi32(0); // Vector of four zeros!
__m128i two_vec = _mm_set1_epi32(2); // Vector of four 2’s!
__m128i ten_vec = _mm_set1_epi32(10); // Vector of four 10’s!
!
for (i=0; i<N; i+=4) {!
 __m128i b_vec, c_vec, d_vec, mask, result;!
 b_vec = _mm_load_si128((__m128i *)&B[i]); // Load 4 elements from B!
 c_vec = _mm_load_si128((__m128i *)&C[i]); // Load 4 elements from C!
 d_vec = _mm_load_si128((__m128i *)&D[i]); // Load 4 elements from D!
!
 c_vec = _mm_add_epi32(c_vec, two_vec); // Add 2 to c_vec!
 d_vec = _mm_add_epi32(d_vec, ten_vec); // Add 10 to d_vec!
 mask = _mm_cmpgt_epi32(b_vec, zero_vec); // Compare b_vec to 0!
 c_vec = _mm_and_si128(c_vec, mask); // AND c_vec and mask!
 d_vec = _mm_andnot_si128(mask, d_vec); // AND d_vec with NOT(mask)!
 result = _mm_or_si128(c_vec, d_vec); // OR c_vec with d_vec!
 _mm_store_si128((__m128i *)&A[i], result); // Store result in A[i]!
}!

13

25

Arranging data for vector operations
■  It is important to organize data in memory so it can be accessed as vectors

–  consider a structure with four elements: x, y, z, v

■  Array of structure:

■  Structure of arrays:

■  Hybrid structure:

■  Rearranging data in memory for vector operation is called data swizzling

0 1 2 3 x: 4 5 6 …

0 1 2 3 y: 4 5 6 …

0 1 2 3 z: 4 5 6 …

0 1 2 3 v: 4 5 6 …

x y z v x y z v x y z v

0 1 2

…

x x x x y y y y z z z z

0 1 2

… v v v v

3

Shuffling data in vectors
■  It is often necessary to rearrange data so that they fit the vector operations
■  SSE contains a number of instructions for shuffling the elements of a vector
■  Example: _mm_shuffle_ps (__m128 a, __m128 b, int i)

–  the integer argument i is a bit mask which specifies how the elements of a and b
should be rearranged

–  the macro _MM_SHUFFLE(b3, b2, a1, a0) creates a bit mask describing the
shuffle operation

–  interleaves values from a and b in the order specified

–  result = _mm_shuffle_ps (x, y, _MM_SHUFFLE(1,0,3,2))

■  There is a rich set of instructions for shuffling, packing and moving elements
in vectors

26

d c b a
0 1 2 3

x: h g f e
0 1 2 3

y:

f e d c
0 1 2 3

result:

14

27

Portability
■  Explicitly vectorized code is not portable

–  only runs on architectures which support the vector extension that is used
–  code using SSE2 intrinsic functions will not run on processors without SSE2

■  Can use conditional compilation in the code
–  the program contains both a vectorized version and a normal scalar version of the

same computation
–  use #ifdef statements to choose the correct version at compile time
–  if the compiler switch –msse2 is on, the GCC compiler defines a macro __SSE2__

■  A benefit of this is also that a non-vectorized version of the code is available for
reference

#ifdef __SSE2__!
 // SSE2 version of the code!
#else!
 // Normal scalar version of the code!
#endif !

CPU dispatching
■  A disadvantage of using extended instruction sets is that the code will not be

compatible with older version of the instruction set
–  the code will not run on older processors

■  One solution is to make performance-critical code available in multiple
versions
–  for instance one version with AVX vectorization and one version with normal

scalar computations
■  A CPU dispatching mechanism detects during runtime which capabilities the

processor has, and calls the appropriate version of the code
–  the computer manufacturers have their own solutions for CPU dispatching
–  uses the CPUID instruction, which returns a set of values describing the

capabilities of the processor
■  CPU dispatching mechanisms are not in general portable between different compilers

or between different computer manufacturers
–  for instance, code compiled on an Intel architecture may perform less efficiently

on an AMD processor

28

