Serial Code Optimization

Shirley Moore
CPS 5401 Fall 2013

svmoore.pbworks.com



Optimization Process

Follow best practices when developing code

Profile code to find “hotspots” (i.e., portions
taking the most time)

— Why?

Develop performance model for hotspot
region

— Why?

Do serial optimizations first

— Why?



Best Practices

Make code clear and simple

Access memory in the preferred order (row-
major in C, column-major in Fortran)

Minimize number of complicated math
operations (e.g., division, square root)
Avoid excessive program modularization

— Use macros
— Write functions that can be inlined



Best Practices (cont.)

* Avoid type casts and conversions
* Minimize the use of pointers
* Avoid the following within loops

— Loop-invariant code
— Branches and conditional statements
— Function calls and I/O operations



Exploit the Hardware

* Minimize stride
— Improves cache usage
— Improves prefetching effectiveness
— Unit stride is optimal in most cases
— Power of 2 strides are BAD
* Write loops with independent iterations when
possible
— Can be unrolled and pipelined
— Can be sent to vector or SIMD units



Array Blocking

Works with small array blocks when
expressions contain mixed stride operations

Uses complete cache lines

Avoids eviction that would otherwise happen
without blocking

Example: matrix multiply



Loop Transformations

Usually best to leave to the compiler but can
oe done by hand

L.oop unrolling
Loop fission
Loop fusion

Loop interchange



Vectorization

* Write loops with independent iterations so
that the compiler can vector

* Uses vector instructions (e.g., SSE, AVX)

* [n some cases, an entire loop can be replace
with a call to a vector function.



Tools that can help

Profilers

Compiler output

Hardware counters (access using PAPI library
or higher-level performance analysis tool)

Automated performance analysis tools



