CS 4390/5390 Fall 2013 Shirley Moore, Instructor Homework 3 Due Tuesday, October 22

You may either do the problems by hand or use a program that you have written (if appropriate). If you do the problem by hand, please show your work. If you use a program, please include the program with your homework submission and explain how you used it to solve the problem.

- 1. Use the appropriate theorem to compute the following:
 - (a) $2^{1,000,000} \pmod{17}$
 - (b) $2^{2007} \pmod{15}$
 - (c) $3^{100,000} \pmod{35}$
- 2. For which positive integers m is each of the following statements true?
 - (a) $27 \equiv 5 \pmod{m}$
 - (b) $1000 \equiv 1 \pmod{m}$
- 3. Find the general solution of 6x + 8y = 100.
- 4. Determine if each of the following linear congruences has a solution, and if so, solve it.
 - (a) $8x \equiv 5 \pmod{13}$
 - (b) $15x \equiv 24 \pmod{27}$
 - (c) $35x \equiv 11 \pmod{49}$
- 5. Suppose it is known that the Diophantine equation 40x 622y = 34 has the complete solution x = 203 + 311t, y = 13 + 20t. What is the complete solution to the congruence $40x = 34 \pmod{622}$?
- 6. Solve the following system of linear congruences.
 - $2x \equiv 11 \pmod{23}$
 - $9x \equiv 12 \pmod{33}$
- 7. The congruence $7^{1734250} \equiv 1660565 \pmod{1734251}$ is true. Show that 1734251 is composite.
- 8. (a) Find $\phi(97)$
 - (b) Find $\phi(8800)$
- 9. Given that the only prime divisors of n = 3035888343 are 3, 19, and 47, compute $\phi(n)$.

- 10. Find all positive integers n such that $\phi(n) = 6$. Prove that you have found all possible solutions.
- 11. Show that there is no positive integer *n* such that $\phi(n) = 14$.
- 12. (a) Show that there are no positive integers *n* satisfying o(n) = 10.
- (b) Find the form of all positive integers n satisfying $\tau(n) = 10$. What is the smallest such integer?
- 13. Find a perfect number larger than 10,000.
- 14. Prove: If $2^n 1$ is prime for n > 0, then n is prime.
- 15. Determine each of the following:
 - (a) $ord_{11}(3)$ (b) $ord_{17}(2)$ (c) $ord_{21}(10)$ (d) $ord_{25}(9)$
- 16. (a) How many primitive roots are there for 761?
 - (b) Given that 6 is the smallest primitive root for 761, find the next three primitive roots.
- 17. Compute $(n-1)! \pmod{n}$ for n = 2, ..., 30. Propose a theorem based on what you observe.