
Introduction	to	Parallel	
Processing
CS	5334/4390	

Shirley	Moore,	Instructor
January	19,	2017

1



Definition	of	Parallel	Computing
• Simultaneous	use	of	multiple	compute	
resources	to	solve	a	computational	problem

2



Definition	(2)
• The	compute	resources	might	be	
– A	single	computer	with	multiple	processors	and/or	cores;	
– An	arbitrary	number	of	computers	connected	by	a	
network;	

– A	combination	of	both.	
• The	computational	problem	should	be	amenable	to
– being	broken	apart	into	discrete	pieces	of	work	that	can	be	
solved	simultaneously;	

– executing	multiple	program	instructions	at	any	moment	in	
time;	

– being	solved	in	less	time	with	multiple	compute	resources	
than	with	a	single	compute	resource.	

3



Why	Use	Parallel	Computing?
• The	universe	is	massively	parallel.
• Save	time	and/or	money
• Solve	larger	problems	
– May	not	be	able	to	fit	data	into	memory	of	single	
computer

• Provide	concurrency
– Necessary	to	take	advantage	of	all	resources	on	
multicore/manycore systems

• Trends	indicated	by	ever	faster	networks,	distributed	
systems,	and	multi-processor	computer	architectures	
(even	at	the	desktop	level)	clearly	show	that	
parallelism	is	the	future	of	computing.	

4



Parallel	Terminology
• Node
– A	standalone	"computer	in	a	box".	Usually	comprised	of	
multiple	CPUs/processors/cores.	Nodes	are	networked	
together	to	comprise	a	supercomputer.

• CPU	/	Socket	/	Processor	/	Core	
– This	varies,	depending	upon	whom	you	talk	to.	In	the	past,	
a	CPU	(Central	Processing	Unit)	was	a	singular	execution	
component	for	a	computer.	Then,	multiple	CPUs	were	
incorporated	into	a	node.	Then,	individual	CPUs	were	
subdivided	into	multiple	"cores",	each	being	a	unique	
execution	unit.	CPUs	with	multiple	cores	are	sometimes	
called	"sockets"	- vendor	dependent.	The	result	is	a	node	
with	multiple	CPUs,	each	containing	multiple	cores.	The	
nomenclature	is	confusing	at	times.

5



Terminology	(2)

• Task
– A	logically	discrete	section	of	computational	work.	A	
task	is	typically	a	program	or	program-like	set	of	
instructions	that	is	executed	by	a	processor.	A	parallel	
program	consists	of	multiple	tasks	running	on	multiple	
processors.	

• Pipelining
– Breaking	a	task	into	steps	performed	by	different	
processor	units,	with	inputs	streaming	through,	much	
like	an	assembly	line;	a	type	of	parallel	computing.	

6



Terminology	(3)
• Shared	memory

– From	a	strictly	hardware	point	of	view,	describes	a	computer	
architecture	where	all	processors	have	direct	(usually	bus	based)	
access	to	common	physical	memory.	In	a	programming	sense,	it	
describes	a	model	where	parallel	tasks	all	have	the	same	"picture"	of	
memory	and	can	directly	address	and	access	the	same	logical	memory	
locations	regardless	of	where	the	physical	memory	actually	exists.	

• Symmetric	Multi-Processor	(SMP)
– Hardware	architecture	where	multiple	processors	share	a	single	

address	space	and	access	to	all	resources.
• Distributed	memory

– In	hardware,	refers	to	network	based	memory	access	for	physical	
memory	that	is	not	common.	As	a	programming	model,	tasks	can	only	
logically	"see"	local	machine	memory	and	must	use	communication	to	
access	memory	on	other	machines	where	other	tasks	are	executing.	

7



Terminology	(4)
• Communication

– Exchange	data	between	parallel	tasks.	There	are	several	ways	this	can	
be	accomplished,	such	as	through	a	shared	memory	or	over	a	
network.

• Synchronization
– The	coordination	of	parallel	tasks	in	real	time,	very	often	associated	

with	communication.	Often	implemented	by	establishing	a	
synchronization	point	within	an	application	where	a	task	may	not	
proceed	further	until	other	tasks	reaches	the	same	or	logically	
equivalent	point.	

• Granularity
– A qualitative	measure	of	the	ratio	of	computation	to	communication.

• Coarse:	relatively	large	amounts	of	computational	work	are	done	between	
communication	events	

• Fine: relatively	small	amounts	of	computational	work	are	done	between	
communication	events	

8



Speedup	and	Overhead
• Speedup	=	Wallclock time	of	serial	execution

Wallcock time	of	parallel	execution

• Parallel	overhead
– The	amount	of	time	required	to	coordinate	parallel	tasks,	
as	opposed	to	doing	useful	work.	Parallel	overhead	can	
include	factors	such	as:	
• Task	start-up	time	
• Synchronizations	
• Data	communications	
• Software	overhead	imposed	by	parallel	compilers,	libraries,	tools,	
operating	system,	etc.	

• Task	termination	time	

9



Scalability

• Refers	to	a	parallel	system's	(hardware	and/or	
software)	ability	to	demonstrate	a	proportionate	
increase	in	parallel	speedup	with	the	addition	of	
more	processors.	

• Factors	that	contribute	to	scalability	include:
– Hardware	

• Especially	memory-CPU	and	network	bandwidths	
– Application	algorithm	
– Parallel	overhead		
– Characteristics	of	your	specific	implementation	

10



Types	of	Scalability
• Strong	scaling

– Fixed	overall	problem	size
– Goal	is	to	reduce	time	to	solve	the	problem
– Ideal	is	perfect	linear	speedup	(e.g.,	with	twice	as	many	processors,	

the	problem	is	solved	in	half	the	time)
• Weak	scaling

– Fixed	problem	size	per	processor
– Scale	up	overall	problem	size	with	number	of	processors	(e.g.,	with	

twice	as	many	processors,	double	the	overall	problem	size)
– Ideal	is	to	solve	the	larger	problem	in	the	same	amount	of	time

• Iso-efficiency	scaling
– Increase	problem	size	along	with	increase	in	number	of	processors	so	

as	to	maintain	constant	efficiency	in	use	of	resources
– Often	requires	increases	problem	size	per	processor

11



Parallel	Programming	Models
• There	are	several	parallel	programming	models	in	
common	use:	
– Shared	Memory	

• Threads	
– Distributed	Memory	/	Message	Passing	
– Data	Parallel	
– Hybrid	
– Single	Program	Multiple	Data	(SPMD)	
– Multiple	Program	Multiple	Data	(MPMD)	

• Parallel	programming	models	exist	as	an	abstraction	
above	hardware	and	memory	architectures.

12



Shared	Memory
• Tasks	share	a	common	address	space,	which	they	read	and	write	to	

asynchronously.	
• Various	mechanisms	such	as	locks	/	semaphores	may	be	used	to	

control	access	to	the	shared	memory.	
• An	advantage	of	this	model	from	the	programmer's	point	of	view	is	

that	the	notion	of	data	"ownership"	is	lacking,	so	there	is	no	need	
to	specify	explicitly	the	communication	of	data	between	tasks,	
simplifying	program	development.	

• A	disadvantage	in	terms	of	performance	is	that	it	becomes	more	
difficult	to	understand	and	manage	data	locality.	Keeping	data	local	
to	the	processor	that	works	on	it	conserves	memory	accesses,	
cache	refreshes	and	bus	traffic	that	occurs	when	multiple	
processors	use	the	same	data.	

13



Threads

• A	type	of	shared	memory	programming	in	
which	each	process	can	have	multiple	
execution	paths

• From	a	programming	perspective,	threads	
implementations	commonly	comprise
– A	library	of	subroutines	that	are	called	from	within	
parallel	source	code	– e.g.,	Pthreads,	Java	threads

– A	set	of	compiler	directives	embedded	in	either	
serial	or	parallel	source	code	– e.g.,	OpenMP

14



POSIX	Threads	(aka	Pthreads)

• Library	based;	requires	parallel	coding	
• Specified	by	the	IEEE	POSIX	1003.1c	standard	
• C	Language	only	
• Commonly	referred	to	as	Pthreads.	
• Most	hardware	vendors	now	offer	Pthreads in	
addition	to	their	proprietary	threads	
implementations.	

• Very	explicit	parallelism;	requires	significant	
programmer	attention	to	detail.	

15



OpenMP
• Compiler	directive	based	
• Jointly	defined	and	endorsed	by	a	group	of	major	
computer	hardware	and	software	vendors
– www.openmp.org

• Portable	/	multi-platform	
• Available	in	C/C++	and	Fortran	implementations	
• Can	be	very	easy	and	simple	to	use	- provides	for	
"incremental	parallelism“

• Until	OpenMP 4.0,	didn’t	have	support	for	data	
locality	=>	can	perform	poorly	

16



Distributed	Memory/Message	Passing	
Model

• A	set	of	tasks	that	use	their	own	local	memory	
during	computation.	
– Multiple	tasks	can	reside	on	the	same	physical	
machine	and/or	across	an	arbitrary	number	of	
machines.	

• Tasks	exchange	data	through	communications	by	
sending	and	receiving	messages.	

• Data	transfer	usually	requires	cooperative	
operations	to	be	performed	by	each	process.	
– For	example,	a	send	operation	must	have	a	matching	
receive	operation.	

17



Message	Passing	Model	Implementation
• From	a	programming	perspective,	message	passing	

implementations	usually	comprise	a	library	of	subroutines.
– Calls	to	these	subroutines	are	embedded	in	source	code.
– The	programmer	is	responsible	for	determining	all	parallelism.	

• Historically,	a	variety	of	message	passing	libraries	have	been	
available	since	the	1980s.	These	implementations	differed	
substantially	from	each	other	making	it	difficult	for	programmers	to	
develop	portable	applications.	

• In	1992,	the	MPI	Forum	was	formed	with	the	primary	goal	of	
establishing	a	standard	interface	for	message	passing	
implementations.	
– www.mpi-forum.org

• MPI	is	now	the	"de	facto"	industry	standard	for	message	passing,	
replacing	virtually	all	other	message	passing	implementations	used	
for	production	work.	MPI	implementations	exist	for	virtually	all	
popular	parallel	computing	platforms.	Not	all	implementations	
include	everything	in	the	standard.

18



Hybrid	Model
• A	hybrid	model	combines	more	than	one	of	the	previously	

described	programming	models.	
• Currently,	a	common	example	of	a	hybrid	model	is	the	combination	

of	the	message	passing	model	(MPI)	with	the	threads	model	
(OpenMP).	
– Threads	perform	computationally	intensive	kernels	using	local,	on-

node	data	
– Communications	between	processes	on	different	nodes	occurs	over	

the	network	using	MPI	
• This	hybrid	model	lends	itself	well	to	the	increasingly	common	

hardware	environment	of	clustered	multi/many-core	machines.	
• Another	similar	and	increasingly	popular	example	of	a	hybrid	model	

is	using	MPI	with	GPU	(Graphics	Processing	Unit)	programming.	
– GPUs perform	computationally	intensive	kernels	using	local,	on-node	

data	
– Communications	between	processes	on	different	nodes	occurs	over	

the	network	using	MPI	
19



Designing	Parallel	Programs

• Understand	the	problem
• Decompose	the	problem
• Design	inter-task	communication	and	
synchronization	(requires	understanding	
dependencies)

20



Cost	of	Communication
• Inter-task	communication	virtually	always	implies	
overhead.	

• Machine	cycles	and	resources	that	could	be	used	for	
computation	are	instead	used	to	package	and	transmit	
data.	

• Communications	frequently	require	some	type	of	
synchronization	between	tasks,	which	can	result	in	
tasks	spending	time	"waiting"	instead	of	doing	work.	

• Competing	communication	traffic	can	saturate	the	
available	network	bandwidth,	further	aggravating	
performance	problems.	

21


