Power Consumption of
Microprocessors and
Roofline Model

Sarala Arunagiri
1 October 2013

Power consumption is a major factor that limits the
performance of computer systems

Rocket Nozzle T
1000 A’s Surface

Nuclear Reactor —

N 100
S
% 5
Z Q A :
: s a result:

= Hot Plate O Pentium III
= Q < um T Datacenter energy costs

10 tends towards outpacing

Pentium Pro hardware prices.
Pentium
1386

O 1486
1 | | | | | | | | |

| | 1 | |] | | |
IS5 Ip 07w O05p 035p 025w 0.18p 0.13p 0lpu 007w

Technology Generation

Increased power consumption => more electricity bill and also cost of cooling
Focus in this class is on

power consumption in the Microprocessor (CPU) and ways to reduce it.

Important Points to Note

The focus of this study is the power consumed
by a microprocessor (chip level). This power
consumption is of two types — dynamic and
static. It is important to understand the factors
affecting these two types of power consumption
and how we could reduce them.

Power Reduction Techniques For
Microprocessor Systems

 Reference: Vasanth Venkatachalam and Michael Franz.
2005. Power reduction techniques for microprocessor
systems. ACM Computing Surveys 37, 3 (September
2005), 195-237. DOI=10.1145/1108956.1108957
http://doi.acm.org/10.1145/1108956.1108957

* For the class we use slides (1 to 16) of the presentation
by Milo Martin and Amir Roth on Power and Energy as
part of the course on Computer Organization and
Design at University of Pennsylvania.

https://www.cis.upenn.edu/~milom/cis371/lectures/
13 power.pdf

Roofline Model

Motivation

There are a variety of Multicore processors with
diverse architectural features. This is due to the
fact that there is no single architecture that is

proven to perform well for all classes of kernels.

Problem: When one optimizes a kernel for a
multicore architecture, how can we tell if it is

good enough? How do you evaluate your level
of optimization?

I
I
|
\

Optimization Categorization

Maximizing
In-core Performance

*Exploit in-core parallelism
(ILP, DLP, etc...)

eGood (enough)
floating-point balance

———
’— -~

reorder
unroII &

ellmlnate l
branches

explicit
SIMD

~
—_————

Maximizing
Memory Bandwidth

eExploit NUMA
eHide memory latency

oSatisfy Little’s Law

———
- -~ -

, unit-stride
streams

memory
1 affinity W
I prefetch
‘\
‘\ DMA TiB K

v lists blocking

-
e -

Minimizing
Memory Traffic

\)/ array
: ! padding
l

. data

Eliminate:

eCapacity misses
eConflict misses
eCompulsory misses
*Write allocate behavior

-——
’—— ~~

cache
blocking

compress

- -
e - —

7 Source: Samuel William’s presentation on the roofline model.

Example Architecture - 1

* Consider the Opteron 2356: T T T
sfols]se sfsls]e
— Dual Socket (NUMA) § § E% § € i § § g‘; g‘;
o o
o R L Y T T I PTTTT] FYTT PRree Pres (2]) [| S R —
J— [— [
limited HW stream prefetchers MEEERE A IEEHEE
— quad_core (8 total) vt it Bt Bt o %é o Lwlelele.
2MB victim = Q3 | | 2MB victim
— 2.3GHz SRI / xbar |} | B SRi/xbar
— 2-way SIMD (DP) Ly 1y
2x64b controllers I 2x64b controllers I
— separate FPMUL and FPADD) ¥
datapaths | | 10.66GBIs | | 10.66GB/s
_ 4-cyc|e FP Iatency 667MHz DDR2 DIMMS| 667MHz DDR2 DIMMsl

sSource: graphics from Samuel William’s presentation on the roofline model.

Example Architeture - 2

IBM QS20 Cell Blade

* Dual socket BN

 Two cell processors at w PP
3.2 GHz

* 8 cores per cell d | HE
processor (16 total) NHEEEHHHEHIN | BN HHHEEEEE R

* Two Gigabit Ethernet L { ! Ll
ports H Lk H

* 1GBXDRAM memory || oo e D e
(512 MB per processor)

* 410 Gflops peak
performance

Source: graphics from Samuel William’s presentation on the roofline model.

Many More Architectures

AMD Barcelona Sun Victoria Falls

Opteron| Opteron| Opteron| Opteron o = o Opteron| Opteron | Opteron | Opteron ololololulo]lelo ololulolulelule
i (<} i lx|lx|ac|lxc|c| x| lo|lxc|lc|c|ac|c|a
g k= g HEEREEEEE HEEREEREEE
512kB [512kB | 512kB | 512KB g o | 2| s12xe | s12ve | s12k8 | s12kB P I PN N I] e =| 5| 5] 55| s| 5] 5] s
icti icti icti icti 5 icti ict icti icti =lelelelelel el e <] =lelelelelelel e
victim | victim | victim | victim g * g victim | victim | victim | victim HEEEEEEHE £ s|5|5|5|5|5]5ls
o . r
2MB Shared quasi-victim (32 way) g] 3 2 2MB Shared quasi-victim (32 way) 2
z N z Crossbar N Crossbar
SRI / crossbar SRI / crossbar © 2
T 7 17968/5 | |, 90 G8/s 853 179.68/s | | 90 68/s
2x64b memory controllers ' | 2x64b memory controllers ‘ 4ME Shéred L2{16iway) g ?g 4ME Shared L2{16iway)
(64biintérledaved) o’; - (64biintérledved)
10.66 GB/s 10.66 GB/s 4iCoherency Hubs 4iCoherency Hubs
667MHz DDR2 DIMMs 667MHz DDR2 DIMMs 2x128b controllers 2x128b controllers
o I
21.3368/s || [} 10.66 GB/s 21.3368/s || [| 10.66 GB/s
667MHz FBDIMMs 667MHz FBDIMMs
— lll.{[l '
wir | 5[5| 5[5 5[5 5[5 5 5|5[5| 5[5 5| 5| vmr Cluster
PPE PPE >1
M| x| x| x M| x| x| x
wlojlolv|lolwo|lwV|© = vlojlolv|lVwlwo|lwV| ©
niuniuniuniunlunlunlwn o nmiuniunluniunlunlunlwn
512K o o g o 512K kol 2
olololofv]lololo o 2 olololofo]lololo 5]
2 2222|2222 S 5 zl 22| 2 2] 2| 2] 2] L2 N
NHEEEEEEE AV NHEEEEEEE =
S
| EIB (ring network) t l Zl EIB (ring network) ' £ l—“
TV - TV >
| XDR memory controllers ' | XDR memory controllers I
25.6 GB/s 25.6 GB/s ter F
512MB XDR DRAM 512MB XDR DRAM 192KB L2 (Téxtures énly)

24 ROPs

6 x 64b memary controllers

86.4 GB/s

768MB 900MHz GDDR3 Device DRAM

10) - , . .
Source: graphics from Samuel William’s presentation on the roofline model.

Challenges / Goals

We have extremely varied architectures.

Moreover, the characteristics of numerical methods can vary
dramatically.

The result is that performance and the benefit of optimization can
vary significantly from one (architecture x kernel) combination to
the next.

We wish to understand whether or not we’ve attained good
performance (high fraction of a theoretical peak)

We wish to identify performance bottlenecks and enumerate
potential remediation strategies.

Source: Samuel William’s presentation on the roofline model.

From the Horse’s Mouth

As part of the Google TechTalk “The Parallel
Revolution Has Started: Are You Part of the Solution
or Part of the Problem?” David Patterson presents
an introduction to the Roofline Model. Please
listen to that part of the talk from minute 40 to
minute 53 of the video that can be accessed at -

http://www.youtube.com/watch?v=A2H SrpAPZU

An Exercise Before Examining
lllustrations of
Usage of Roofline Model

Goal: Familiarize ourselves with the concept of
operational intensity and learn to draw the roofline
model.

Exercise

Exercise 1: What is the operational intensity (Ops/byte)
of the following code segment, assuming each data is 4
bytes long? A, B, and C are vectors of complex numbers.

Code segment 1

For (i=0; i<300; i++){
C reli] = A _reli]*B_re[i] — A_im[i]*B_imli];
C iml[i] = A rel[i]*B_im[i] + A_im[i]*B_reli];

Exercise

Exercise 1: What is the operational intensity (Ops/byte)
of the following code segment, assuming each data is 4

bytes long?

Code segment 1
For (i=0; i<300; i++){
C re[i] = A _re[i]*B_re[i] — A_im[i]*B_im[i];
C_im[i] = A_re[i]*B_im[i] + A_im[i]*B_re]Ji];
}

Answer:

Total number of operations in the segment =6*300

Number of reads = 4*300

Number of writes = 2*300

Number of operations per read/write = (6*300)/300(4+2) =1
Operations per byte = %

Exercise

Exercise 2: What is the operational intensity (Ops/byte)
of the following code segment, assuming each data is 4
bytes long?

Code segment 2
For (i=1; i<99; i++){
For (j=1; j<99; j++){
I[i,j] = I[i-1, j-1]*K[O,0]+1[i-1,j]*K[O,1]+I[i-1,j+1] *K[O, 2]+
I[i, j-1]*K[1,0]+I[i,j]*K[1,21]+I[i,j+1]*K[1,2]+
I[i+1, j-1]*K[2,0]+I[i+1,j]*K[2,1]+I[i+1,j+1]*K[2,2]
}
}

Additional information (probably not relevant to this exercise) about the code segment.
This operation used in image processing is like mathematical convolution of an image
matrix | using the kernel K, which is also called the convolution matrix or mask. Operations
such as blurring, sharpening, embossing, and edge-detection are performed using different

kernels. Note that this code segment does not contain the normalization in the convolution
operation.

Answer:
Number of operations = 98*98*(9+8)

= Approx. (10,000)*17 = 170,000 operations
Number of data read = 100*100+9 (Matrices |
and K)
Amount of data read = (10,000+9)*4 bytes
Number of data written = 100*100 (Matrix I)

Amount of data (bytes) written = (10,000*4)
bytes

Total data written to or read from memory =
Approx. (20,000*4) bytes = (80,000) bytes

Operations/byte = Approx. 2

FMA and MAC

Modern processors implement Fused Multiply Add
(FMA) or Multiply and Accumulate (MAC) instructions.
Given three operands a, b, and ¢, the FMA can compute
any one of the following in one step;

y = a+(b*c)
y = a-(b*c)

y =-a+(b*c)
y =-a-(b*c)

Note: A processor with FMA can perform the (9+8)
operations in Code segment 2 in 9 time steps.

Exercise

Exercise 3: What is the operational intensity (Ops/byte)
of the following code segment, assuming each data is 4
bytes long?

Code segment 3
For (i=1; i<99; i++){
For (j=1; j<99; j++){
I[i,j] = I[i-1, j-1]+I[i-1,j]+1[i-1,j+1]+
I[i, j-1]+I[i,j]+1[i,j+1]+
I[i+1, j-1]+1[i+1,j]+I[i+1,j+1]

Exercise

Exercise 3: What is the operational intensity (Ops/byte)
of the following code segment, assuming each data is 4
bytes long?

Code segment 3
For (i=1; i<99; i++){
For (j=1; j<99; j++){
I[i,j] = I[i-1, j-1]+I[i-1,j]+1[i-1,j+1]+
I[i, j-1]+I[i,j]+1[i,j+1]+
I[i+1, j-1]+1[i+1,j]+I[i+1,j+1]

}

Answer: 1 operation/byte.

Exercise

Note:

Assuming there is one functional unit to perform addition,
the number of time steps to complete the operations in
each iteration is 8, which is comparable to (about the same
as) what we achieved with an FMA and Code segment 2

that had almost two times the operations in Code segment
1.

Observation: Code segment 3 does not utilize FMA.

Exercise

Code segment 1
For (i=0; i<300; i++){
C reli] =A_re[i]*B_re[i] — A_im][i]*B_iml[i];
C_iml[i] =A_reli]*B_im[i] + A_iml[i]*B_re[i];
}
Assuming that

 there are 10 FMAs in a processor

e Codesegment 1 is rewritten with loop unrolling to
utilize the 10 FMAs in SIMD mode.

Question: How much speed-up can you expect while
executing Code segment 27

Plotting Rooflines

Given the following machine specifications for a core:

(a) Peak performance with SIMD of 8 operations/cycle

(b) Scalar Peak performance (without SIMD) 2 ops/cycle

(c) Maximal memory bandwidth = 1 double/cycle = 8 bytes/cycle

(d) Maximal bandwidth achievable without spatial locality = (1/8)
double/cycle = 1 byte/cycle,

Draw a roofline plot for double precision floating point
operations on the core. The units for x-axis and y-axis are ops/
byte and ops/cycle, respectively.

Note: (1) that the bandwidths always refer to off-chip data
transfers, and (2) the plots need to be log-log plots.

Plotting Rooflines

Specifically, the plot should contain 4 lines:

(a) Upper bound based on peak performance with SIMD
(b) Upper bound based on scalar peak performance

(c) Upper bound based on the maximal memory bandwidth

(d) Upper bound based on the maximal bandwidth achievable

without spatial locality (e.g., random access of doubles in a very
large array).

Finally answer the following: What is the minimal operational
intensity that a non-vectorizable (cannot use SIMD operation)
computation without spatial locality needs to have to be
compute bound?

Roofline: Drawing Bounds Based on
Memory Bandwidth
Given: x = operations/byte = operational intensity (Ol) ; and
y= operations/cycle; What is the relationship between x, the

memory bandwidth (B) in bytes/sec, and the upper bound on vy, the
number of operations/cycle?

Number of operations/cycle <= (memory bandwidth*operational
intensity);

Thus, the bounding line is given by y = B*x, a straight line with
slope = B and y-intercept = 0.

Since we need a log-log plot taking logarithms on both sides;

log(y) = log(B) + log(x) — fortunately the straight line y = 8*x
translated to a straight line in the log-log scale with slope =1 and
with log(y) = log(B) for x=1.

Question: Why do we need log-log plots?

References

* Presentation by Sam Williams at https://ftg.lbl.gov/
assets/staff/swwilliams/talks/parlabO8roofline.pdf. We
use this to illustrate how this model is used to analyze
the performance of various kernels executing on a few
multicore processors.

 Samuel Williams, Andrew Waterman, and David
Patterson. 2009. Roofline: an insightful visual
performance model for multicore architectures.
Commun. ACM 52, 4 (April 2009), 65-76.
DOI=10.1145/1498765.1498785 http://doi.acm.org/
10.1145/1498765.1498785

