CPS5401 Fall 2012
Shirley Moore, Instructor
Take-home quiz (Practice test)
Due Tuesday, October 23

1. Consider the multicore processor shown below (figure from csail.mit.edu).

- a) Explain why some sort of cache coherence protocol is needed on this processor.
- b) Assume the processor uses a basic MSI cache coherence protocol where the three states that a cache line can be in are Modified, Shared, and Invalid. Assume that the caches use a write back policy. Give a possible correct set of states for the cache line on each core containing the variable x and for the value of x on each core and in main memory for the sequence of events in the table below. Assume that initially the value of x is 7 and the cache line is not in any of the caches.

Event	Core 1		Core 2		Core 3		Core 4		Value of x in
	State	X	State	X	State	X	State	Х	memory
Cores 1,2,3 read x									
Core 4 adds 1 to x									
Core 2 reads x									

- 2. a) What is bisection bandwidth and why is it used as a measure of network performance?
- b) The bisection bandwidth of an N-dimensional torus network with P processors is given by $2P^{(N-1)/N}B$, where B is the bandwidth of a single link. Suppose you are the designer of a line of supercomputers that use a 3D torus network. Assume that your current products all have at least 100,000 processors. If you were to design a new line with a 5D torus network and double the number of processors, how would the bisection network of the product change? Please express your answer in terms of the number of processors P of the original product. Would the bisection bandwidth improve or degrade with the change?
- 3. Why does a direct mapped cache have a lower hit latency than a set associative cache of the same capacity?
- 4. Consider the following two loops, written in C, that calculate the sum of the entries in a 128-by-64 matrix of 32-bit integers.

Loop A	Loop B
sum = 0;	sum = 0;
for (i = 0; i < 128; i++)	for $(j = 0; j < 64; j++)$
for (j = 0; j < 64; j++)	for (i = 0; i < 128; i++)
sum += A[i][j];	sum += A[i][j];

The matrix A is stored contiguously in memory in row-major order. Row-major order means that elements in the same row of the matrix are adjacent in memory as shown in the following memory layout:

0	4	252	256	4*(64*127+63)
A[0][0]	A[0][1]	 A[0][63]	A[1][0]	 A[127][63]

Assume that only accesses to matrix A cause memory references and that all other variables are stored in registers and that instructions are in a separate instruction cache. Consider a direct-mapped cache with 32-byte cache lines. Assume the cache is initially empty.

- a) Calculate the minimum cache size required if loop A is to run without any cache misses other than initial compulsory misses. Please explain your answer.
- b) Calculate the minimum cache size required if loop B is to run without any cache misses other than compulsory misses. Please explain your answer.

5. Explain what is wrong with the OpenMP code fragment below and provide a correct and efficient version. Note that only the outer loop will be parallelized by the parallel directive and that local variables within the parallelized loop (e.g., offset) are automatically private.

- 6. In an MPI program, how do you assign different work to each processor if all processors are running the same program?
- 7. What three lines are required in any MPI program and what is the purpose of each? (You may describe them rather than giving exact C or Fortran code)
- 8. Could the point-to-point communication sketched below ever lead to deadlock? Explain why or why not.

```
Process 0
Process 1

ISend(1)
ISend(0)

IRecv(1)
IRecv(0)

Waitall
Waitall
```