
Introduction to OpenMP
Shirley Moore
shirley@eecs.utk.edu

CS594: Scientific Computing for Engineers February 29, 2012

Acknowledgment

•  These slides are adapted from the Lawrence Livermore
OpenMP Tutorial by Blaise Barney at

 https://computing.llnl.gov/tutorials/openMP/

2

What is OpenMP?

•  An Application Program Interface (API) that may be used
to explicitly direct multi-threaded, shared memory
parallelism

•  Comprises three primary API components
•  Compiler Directives
•  Runtime Library Routines
•  Environment Variables

•  Portable
•  The API is specified for C/C++ and Fortran
•  Has been implemented for most major platforms including Unix/

Linux platforms and Windows NT

3

What is OpenMP? (cont.)

•  Standardized
•  Jointly defined and endorsed by a group of major computer

hardware and software vendors
•  Expected to become an ANSI standard later???

•  What does OpenMP stand for?
•  Short version: Open Multi-Processing
•  Long version: Open specifications for Multi-Processing via

collaborative work between interested parties from the hardware
and software industry, government and academia.

4

OpenMP is NOT
•  Meant for distributed memory parallel systems (by itself)
•  Necessarily implemented identically by all vendors
•  Guaranteed to make the most efficient use of shared memory
•  Required to check for data dependencies, data conflicts, race

conditions, or deadlocks
•  Required to check for code sequences that cause a program

to be classified as non-conforming
•  Meant to cover compiler-generated automatic parallelization

and directives to the compiler to assist such parallelization
•  Designed to guarantee that input or output to the same file is

synchronous when executed in parallel (The programmer is
responsible for synchronizing input and output).

5

References
•  OpenMP website: openmp.org

API specifications, FAQ, presentations, discussions, media
releases, calendar, membership application and more...

•  Wikipedia: en.wikipedia.org/wiki/OpenMP
•  Barbara Chapman, Gabriele Jost, and Ruud van der Pas:

Using OpenMP. The MIT Press, 2008.
•  Compiler documentation

•  IBM: www-4.ibm.com/software/ad/fortran
•  Cray: http://docs.cray.com/ (Cray Fortran Reference Manual)
•  Intel: www.intel.com/software/products/compilers/
•  PGI: www.pgroup.com
•  PathScale: www.pathscale.com
•  GNU: gnu.org

6

History of OpenMP

•  In the early 90's, vendors of shared-memory machines
supplied similar, directive-based, Fortran programming
extensions.
•  The user would augment a serial Fortran program with

directives specifying which loops were to be parallelized.
•  The compiler would be responsible for automatically parallelizing

such loops across the SMP processors.
•  Implementations were all functionally similar, but were

divergent.
•  First attempt at a standard was the draft for ANSI X3H5

in 1994. It was never adopted, largely due to waning
interest as distributed memory machines became
popular.

7

History of OpenMP (cont.)

•  The OpenMP standard specification started in the spring of
1997, taking over where ANSI X3H5 had left off, as newer
shared memory machine architectures started to become
prevalent.

•  Led by the OpenMP Architecture Review Board (ARB).
Original ARB members included: (Disclaimer: all partner
names derived from the OpenMP web site)
•  Compaq / Digital
•  Hewlett-Packard Company
•  Intel Corporation
•  International Business Machines (IBM)
•  Kuck & Associates, Inc. (KAI)
•  Silicon Graphics, Inc.
•  Sun Microsystems, Inc.
•  U.S. Department of Energy ASCI program

8

Other Contributors

•  Endorsing application developers
•  ADINA R&D, Inc.
•  ANSYS, Inc.
•  Dash Associates
•  Fluent, Inc.
•  ILOG CPLEX Division
•  Livermore Software Technology Corporation (LSTC)
•  MECALOG SARL
•  Oxford Molecular Group PLC
•  The Numerical Algorithms Group Ltd.(NAG)

•  Endorsing software vendors
•  Absoft Corporation
•  Edinburgh Portable Compilers
•  GENIAS Software GmBH
•  Myrias Computer Technologies, Inc.
•  The Portland Group, Inc. (PGI)

9

OpenMP Release History

10

Goals of OpenMP

•  Standardization
•  Provide a standard among a variety of shared memory architectures/

platforms
•  Lean and mean

•  Establish a simple and limited set of directives for programming shared
memory machines

•  Significant parallelism can be implemented by using just 3 or 4 directives.
•  Ease of Use

•  Provide capability to incrementally parallelize a serial program, unlike
message-passing libraries which typically require an all or nothing approach

•  Provide the capability to implement both coarse-grain and fine-grain
parallelism

•  Portability
•  Supports Fortran (77, 90, and 95), C, and C++

•  Public forum for API and membership

11

OpenMP Programming Model

•  Shared memory, thread-based parallelism
•  OpenMP is based upon the existence of multiple threads in the

shared memory programming paradigm.
•  A shared memory process consists of multiple threads.

•  Explicit Parallelism
•  OpenMP is an explicit (not automatic) programming model, offering

the programmer full control over parallelization.
•  OpenMP uses the fork-join model of parallel execution.
•  Compiler directive based

•  Most OpenMP parallelism is specified through the use of compiler
directives which are imbedded in C/C++ or Fortran source code.

•  Nested parallelism support
•  The API provides for the placement of parallel constructs inside of

other parallel constructs.
•  Implementations may or may not support this feature.

12

Fork-Join Model

•  All OpenMP programs begin as a single process: the master
thread. The master thread executes sequentially until the first
parallel region construct is encountered.

•  FORK: the master thread then creates a team of parallel threads
•  The statements in the program that are enclosed by the parallel

region construct are then executed in parallel among the team
threads.

•  JOIN: When the team threads complete the statements in the
parallel region construct, they synchronize and terminate, leaving
only the master thread

13

I/O

•  OpenMP specifies nothing about parallel I/O. This is
particularly important if multiple threads attempt to write/
read from the same file.

•  If every thread conducts I/O to a different file, the issues
are not as significant.

•  It is entirely up to the programmer to ensure that I/O is
conducted correctly within the context of a multi-threaded
program.

14

Memory Model

•  OpenMP provides a "relaxed-consistency" and
"temporary" view of thread memory (in their words). In
other words, threads can "cache" their data and are not
required to maintain exact consistency with real memory
all of the time.

•  When it is critical that all threads view a shared variable
identically, the programmer is responsible for insuring
that the variable is FLUSHed by all threads as needed.

•  More on this later...

15

OpenMP Code Structure - Fortran
 PROGRAM HELLO
 INTEGER VAR1, VAR2, VAR3
 Serial code

 .
 .
 .
 Beginning of parallel section. Fork a team of threads. Specify variable scoping
!$OMP PARALLEL PRIVATE(VAR1, VAR2) SHARED(VAR3)

 Parallel section executed by all threads
 .
 .
 .
 All threads join master thread and disband
!$OMP END PARALLEL
 Resume serial code
 .
 .
 .

 END

16

OpenMP Code Structure – C/C++
 #include <omp.h>
 main () {
 int var1, var2, var3;
 Serial code
 .
 .
 .
 Beginning of parallel section. Fork a team of threads. Specify variable scoping
 #pragma omp parallel private(var1, var2) shared(var3)
 {
 Parallel section executed by all threads
 .
 .
 .
 All threads join master thread and disband
 }
 Resume serial code
 .
 .
 .
 }

17

Fortran Directives Format
<sentinel> <directive-name> [clause…]

•  All Fortran OpenMP directives must begin with a
sentinel. The accepted sentinels depend on the type of
Fortran source (see next two slides).

•  A valid OpenMP directive must appear after the sentinel
and before any clauses.

•  Optional clauses can be in any order and repeated as
necessary unless otherwise restricted.

•  Example:
 !$OMP PARALLEL DEFAULT(SHARED) PRIVATE(BETA,PI)

18

Fortran Directives Format (2)
•  Fixed Form Source

•  !$OMP C$OMP *$OMP are accepted sentinels and must start in
column 1

•  All Fortran fixed form rules for line length, white space, continuation
and comment columns apply for the entire directive line

•  Initial directive lines must have a space/zero in column 6.
•  Continuation lines must have a non-space/zero in column 6.

•  Free Form Source
•  !$OMP is the only accepted sentinel. Can appear in any column, but

must be preceded by white space only.
•  All Fortran free form rules for line length, white space, continuation

and comment columns apply for the entire directive line
•  Initial directive lines must have a space after the sentinel.
•  Continuation lines must have an ampersand as the last non-blank

character in a line. The following line must begin with a sentinel and
then the continuation directives.

19

Fortran Directives Format (3)
•  General Rules

•  Comments cannot appear on the same line as a directive
•  Only one directive-name may be specified per directive
•  Fortran compilers that are OpenMP enabled generally include a

command line option that instructs the compiler to activate and
interpret all OpenMP directives.

•  Several Fortran OpenMP directives come in pairs and have the
form shown below. The "end" directive is optional but advised for
readability.

!$OMP <directive>
 [structured block of code]
!$OMP end <directive>

20

C/C++ Directives Format

#pragma omp <directive-name> [clause,…] \n

•  Newline at the end required and precedes the structured
block that follows the directive

Example:

 #pragma omp parallel default(shared) private(beta,pi)

21

C/C++ Directive Format (2)

•  General Rules:
•  Case sensitive
•  Directives follow conventions of the C/C++ standards for

compiler directives.
•  Only one directive-name may be specified per directive.
•  Each directive applies to at most one succeeding statement,

which must be a structured block.
•  Long directive lines can be "continued" on succeeding lines by

escaping the newline character with a backslash ("\") at the end
of a directive line.

22

Directive Scoping

•  Static (Lexical) Extent
•  The code textually enclosed between the beginning and the end

of a structured block following a directive.
•  The static extent of a directives does not span multiple routines

or code files
•  Orphaned Directive

•  An OpenMP directive that appears independently from another
enclosing directive is said to be an orphaned directive. It exists
outside of another directive's static (lexical) extent.

•  Will span routines and possibly code files
•  Dynamic Extent

•  The dynamic extent of a directive includes both its static (lexical)
extent and the extents of its orphaned directives.

23

Directive Scoping Example

24

 PROGRAM TEST
 . . .
!$OMP PARALLEL
 . . .
!$OMP DO
 DO I=. . .
 . . .
 CALL SUB1
 . . .
 ENDDO
 . . .
 CALL SUB2
 . . .
!$OMP END PARALLEL

 SUBROUTINE SUB1
 . . .
!$OMP CRITICAL
 . . .
!$OMP END CRITICAL
 END

 SUBROUTINE SUB2
 . . .
!$OMP SECTIONS
 . . .
!$OMP END SECTIONS
 . . .
 END

STATIC EXTENT
The DO directive occurs within an

enclosing parallel region.

ORPHANED DIRECTIVES
The CRITICAL and SECTIONS

directives occur outside an enclosing
parallel region.

DYNAMIC EXTENT
The CRITICAL and SECTIONS directives occur within the dynamic extent of the

DO and PARALLEL directives.

PARALLEL Region Construct
•  Block of code that will be executed by multiple threads
•  Fundamental OpenMP parallel construct
•  When a thread reaches a PARALLEL directive, it creates a

team of threads and becomes the master of the team. The
master is a member of that team and has thread number 0
within that team.

•  Starting from the beginning of this parallel region, the code is
duplicated and all threads will execute that code.

•  There is an implied barrier at the end of a parallel section.
Only the master thread continues execution past this point.

•  If any thread terminates within a parallel region, all threads in
the team will terminate, and the work done up until that point
is undefined.

25

PARALLEL Region Syntax - Fortran

!$OMP PARALLEL [clause ...]
 IF (scalar_logical_expression)
 PRIVATE (list)
 SHARED (list)
 DEFAULT (PRIVATE | FIRSTPRIVATE | SHARED | NONE)
 FIRSTPRIVATE (list)
 REDUCTION (operator: list)
 COPYIN (list)
 NUM_THREADS (scalar-integer-expression)

 block

!$OMP END PARALLEL

26

PARALLEL Region Syntax – C/C++

#pragma omp parallel [clause ...] newline
 if (scalar_expression)
 private (list)
 shared (list)
 default (shared | none)
 firstprivate (list)
 reduction (operator: list)
 copyin (list)
 num_threads (integer-expression)

 structured_block

27

PARALLEL Region – Number of Threads

•  The number of threads in a parallel region is determined
by the following factors, in order of precedence:
1.  Evaluation of the IF clause
2.  Setting of the NUM_THREADS clause
3.  Use of the omp_set_num_threads() library function
4.  Setting of the OMP_NUM_THREADS environment variable
5.  Implementation default - usually the number of cores on a

node.

•  Threads are numbered from 0 (master thread) to N-1

28

Nested Parallel Regions

•  Use the omp_get_nested() library function to determine
if nested parallel regions are enabled.

•  The two methods available for enabling nested parallel
regions (if supported) are:
•  The omp_set_nested() library routine
•  Setting of the OMP_NESTED environment variable to TRUE

•  If not supported, a parallel region nested within another
parallel region results in the creation of a new team,
consisting of one thread, by default.

29

PARALLEL Region Restrictions

•  A parallel region must be a structured block that does not
span multiple routines or code files

•  It is illegal to branch into or out of a parallel region
•  Only a single IF clause is permitted
•  Only a single NUM_THREADS clause is permitted

30

PARALLEL Region Example - Fortran
 PROGRAM HELLO
 INTEGER NTHREADS, TID, OMP_GET_NUM_THREADS,
 + OMP_GET_THREAD_NUM
C Fork a team of threads with each thread having a private TID variable
!$OMP PARALLEL PRIVATE(TID)
C Obtain and print thread id
 TID = OMP_GET_THREAD_NUM()
 PRINT *, 'Hello World from thread = ', TID
C Only master thread does this
 IF (TID .EQ. 0) THEN
 NTHREADS = OMP_GET_NUM_THREADS()
 PRINT *, 'Number of threads = ', NTHREADS
 END IF
C All threads join master thread and disband
!$OMP END PARALLEL
 END

31

PARALLEL Region Example - C

#include <omp.h>
main () {
int nthreads, tid;
/* Fork a team of threads with each thread having a private tid variable */
#pragma omp parallel private(tid)
 {
 /* Obtain and print thread id */
 tid = omp_get_thread_num();
 printf("Hello World from thread = %d\n", tid);
 /* Only master thread does this */
 if (tid == 0) {
 nthreads = omp_get_num_threads();
 printf("Number of threads = %d\n", nthreads);
 }
 } /* All threads join master thread and terminate */
}

32

Work-sharing Constructs

•  A work-sharing construct divides the execution of the
enclosed code region among the members of the team that
encounter it.

•  Work-sharing constructs do not launch new threads
•  There is no implied barrier upon entry to a work-sharing

construct, however there is an implied barrier at the end of a
work sharing construct.

•  A work-sharing construct must be enclosed dynamically within
a parallel region in order for the directive to execute in
parallel.

•  Work-sharing constructs must be encountered by all members
of a team or none at all

•  Successive work-sharing constructs must be encountered in
the same order by all members of a team.

33

Types of Work-sharing Constructs

•  DO / for
•  Shares iterations of a loop across the team
•  Represents a type of "data parallelism”

•  SECTIONS
•  Breaks work into separate, discrete sections
•  Each section is executed by a thread.
•  Can be used to implement a type of "functional parallelism”

•  SINGLE
•  Serializes a section of code

34

Fortran DO Directive Syntax
!$OMP DO [clause ...]
 SCHEDULE (type [,chunk])
 ORDERED
 PRIVATE (list)
 FIRSTPRIVATE (list)
 LASTPRIVATE (list)
 SHARED (list)
 REDUCTION (operator | intrinsic : list)
 COLLAPSE (n)

 do_loop

!$OMP END DO [NOWAIT]

35

C/C++ for Directive Syntax
#pragma omp for [clause ...] newline
 schedule (type [,chunk])
 ordered
 private (list)
 firstprivate (list)
 lastprivate (list)
 shared (list)
 reduction (operator: list)
 collapse (n)
 nowait

 for_loop
36

SCHEDULE Clause
•  Describes how iterations of the loop are divided among the threads in the team. The default

schedule is implementation dependent.

 STATIC
 Loop iterations are divided into pieces of size chunk and then statically assigned to threads. If chunk

is not specified, the iterations are evenly (if possible) divided contiguously among the threads.
 DYNAMIC
 Loop iterations are divided into pieces of size chunk, and dynamically scheduled

 among the threads; when a thread finishes one chunk, it is dynamically assigned
 another. The default chunk size is 1.

 GUIDED
 For a chunk size of 1, the size of each chunk is proportional to the number of

 unassigned iterations divided by the number of threads, decreasing to 1. For a chunk
 size with value k (greater than 1), the size of each chunk is determined in the same
 way with the restriction that the chunks do not contain fewer than k iterations (except
 for the last chunk to be assigned, which may have fewer than k iterations). The default
 chunk size is 1.

 RUNTIME
 The scheduling decision is deferred until runtime by the environment variable

 OMP_SCHEDULE. It is illegal to specify a chunk size for this clause.
 AUTO
 The scheduling decision is delegated to the compiler and/or runtime system.

37

Other DO/for Clauses

•  NO WAIT / nowait: If specified, then threads do not
synchronize at the end of the parallel loop.

•  ORDERED: Specifies that the iterations of the loop must
be executed as they would be in a serial program.

•  COLLAPSE: Specifies how many loops in a nested loop
should be collapsed into one large iteration space and
divided according to the schedule clause. The sequential
execution of the iterations in all associated loops
determines the order of the iterations in the collapsed
iteration space.

•  Other clauses are described in detail later.

38

Fortran DO Directive Example
 PROGRAM VEC_ADD_DO
 INTEGER N, CHUNKSIZE, CHUNK, I
 PARAMETER (N=1000)
 PARAMETER (CHUNKSIZE=100)
 REAL A(N), B(N), C(N)
! Some initializations
 DO I = 1, N
 A(I) = I * 1.0
 B(I) = A(I)
 ENDDO
 CHUNK = CHUNKSIZE
!$OMP PARALLEL SHARED(A,B,C,CHUNK) PRIVATE(I)
!$OMP DO SCHEDULE(DYNAMIC,CHUNK)
 DO I = 1, N
 C(I) = A(I) + B(I)
 ENDDO
!$OMP END DO NOWAIT
!$OMP END PARALLEL
 END

39

C for Directive Example
#include <omp.h>
#define CHUNKSIZE 100
#define N 1000

main () {
int i, chunk;
float a[N], b[N], c[N];
/* Some initializations */
for (i=0; i < N; i++)
 a[i] = b[i] = i * 1.0;
chunk = CHUNKSIZE;
#pragma omp parallel shared(a,b,c,chunk) private(i)
 {
 #pragma omp for schedule(dynamic,chunk) nowait
 for (i=0; i < N; i++)
 c[i] = a[i] + b[i];
 } /* end of parallel section */
}

40

SECTIONS Directive – Fortran Syntax
!$OMP SECTIONS [clause ...]
 PRIVATE (list)
 FIRSTPRIVATE (list)
 LASTPRIVATE (list)
 REDUCTION (operator | intrinsic : list)

!$OMP SECTION

 block

!$OMP SECTION

 block

!$OMP END SECTIONS [NOWAIT]

41

SECTIONS Directive – C/C++ Syntax
#pragma omp sections [clause ...] newline
 private (list)
 firstprivate (list)
 lastprivate (list)
 reduction (operator: list)
 nowait
 {
 #pragma omp section newline

 structured_block

 #pragma omp section newline

 structured_block

 }

42

SECTIONS Directive Example - Fortran
 PROGRAM VEC_ADD_SECTIONS
 INTEGER N, I
 PARAMETER (N=1000)
 REAL A(N), B(N), C(N), D(N)
! Some initializations
 DO I = 1, N
 A(I) = I * 1.5
 B(I) = I + 22.35
 ENDDO
!$OMP PARALLEL SHARED(A,B,C,D), PRIVATE(I)
!$OMP SECTIONS
!$OMP SECTION
 DO I = 1, N
 C(I) = A(I) + B(I)
 ENDDO
!$OMP SECTION
 DO I = 1, N
 D(I) = A(I) * B(I)
 ENDDO
!$OMP END SECTIONS NOWAIT
!$OMP END PARALLEL
 END

43

SECTIONS Directive Example - C
#include <omp.h>
#define N 1000
main () {
int i;
float a[N], b[N], c[N], d[N];
/* Some initializations */
for (i=0; i < N; i++) {
 a[i] = i * 1.5;
 b[i] = i + 22.35;
 }
#pragma omp parallel shared(a,b,c,d) private(i)
 {
 #pragma omp sections nowait
 {
 #pragma omp section
 for (i=0; i < N; i++)
 c[i] = a[i] + b[i];
 #pragma omp section
 for (i=0; i < N; i++)
 d[i] = a[i] * b[i];
 } /* end of sections */
 } /* end of parallel section */
}

44

Questions for Thought

•  What happens if the number of threads and the number
of SECTIONs are different? What if there are more
threads than SECTIONs? fewer threads than
SECTIONs?

•  Which thread executes which SECTION?

45

Synchronization Constructs
•  Motivation: Consider a simple example where two threads on two

different processors are both trying to increment a variable x at the
same time (assume x is initially 0).

•  The incrementation of x must be synchronized between the two threads
to insure that the correct result is produced.

•  OpenMP provides a variety of synchronization sonstructs that control
how the execution of each thread proceeds relative to other team
threads.

46

THREAD 1:
increment(x)
{
 x = x + 1;
}

THREAD 1:
10 LOAD A, (x address)
20 ADD A, 1
30 STORE A, (x address)

THREAD 2:
 increment(x)
{
 x = x + 1;
}

THREAD 2:
10 LOAD A, (x address)
 20 ADD A, 1
 30 STORE A, (x address)

CRITICAL Directive
•  The CRITICAL directive specifies a region of code that must be

executed by only one thread at a time.

•  If a thread is currently executing inside a CRITICAL region and another
thread reaches that CRITICAL region and attempts to execute it, it will
block until the first thread exits that CRITICAL region.

•  The optional name enables multiple different CRITICAL regions to exist.
•  Names act as global identifiers. Different CRITICAL regions with the same name

are treated as the same region.
•  All unnamed CRITICAL regions are treated as the same region.

47

Fortran
!$OMP CRITICAL [name]
 block
!$OMP END CRITICAL

C/C++
#pragma omp critical [name] newline
 structured_block

CRITICAL Directive Example - Fortran
 PROGRAM CRITICAL
 INTEGER X
 X = 0

!$OMP PARALLEL SHARED(X)
!$OMP CRITICAL

 X = X + 1
!$OMP END CRITICAL
!$OMP END PARALLEL

 END

48

CRITICAL Directive Example - C

#include <omp.h>

main()
{
int x;
x = 0;
#pragma omp parallel shared(x)
 {
 #pragma omp critical
 x = x + 1;
 } /* end of parallel region */
}

49

Other Synchronization Constructs
•  MASTER directive

•  Specifies a region that is to be executed only by the master thread of the team
•  All other threads on the team skip this section of code.
 Fortran: !$OMP MASTER
 block
 !$OMP END MASTER
 C/C++: #pragma omp master newline
 structured block

•  BARRIER directive
•  Synchronizes all threads in the team
•  When a BARRIER directive is reached, a thread will wait at that point until all other threads

have reached that barrier. All threads then resume executing in parallel the code that follows
the barrier.

 Fortran: !$OMP BARRIER
 C/C++: #pragma omp barrier newline

•  ATOMIC directive
•  specifies that a specific memory location must be updated atomically, rather than letting

multiple threads attempt to write to it
•  Appies only to a single, immediately following statement
 Fortran: !$OMP ATOMIC
 C/C++: #pragma omp atomic newline

50

FLUSH Directive
•  Identifies a synchronization point at which the

implementation must provide a consistent view of
memory

•  Thread-visible variables are written back to memory at
this point.

•  Necessary to instruct the compiler that a variable must
be written to/read from the memory system, i.e. that a
variable cannot be kept in a local CPU register
•  Keeping a variable in a register in a loop is very common when

producing efficient machine language code for a loop.

51

FLUSH Directive (2)
 Fortran: !$OMP FLUSH (list)
 C/C++: #pragma omp flush (list) newline
•  The optional list contains a list of named variables that will be

flushed in order to avoid flushing all variables. For pointers in
the list, the pointer itself is flushed, not the object to which it
points.

•  Implementations must ensure any prior modifications to
thread-visible variables are visible to all threads after this
point; i.e., compilers must restore values from registers to
memory, hardware might need to flush write buffers, etc.

•  The FLUSH directive is implied for the directives shown in the
table below. The directive is not implied if a NOWAIT clause is
present.

52

FLUSH Directive (3)
•  The FLUSH directive is implied for the directives shown

in the table below. The directive is not implied if a
NOWAIT clause is present.

53

Fortran C/C++

BARRIER
END PARALLEL
CRITICAL and END CRITICAL
END DO
END SECTIONS
END SINGLE
ORDERED and END ORDERED

barrier
parallel – upon entry and exit
critical – upon entry and exit
ordered – upon entry and exit
for – upon exit
sections – upon exit
single – upon exit

ORDERED Directive
•  Specifies that iterations of the enclosed loop will be executed in the

same order as if they were executed on a serial processor
•  Threads will need to wait before executing their chunk of iterations if

previous iterations haven't completed yet.
•  Used within a DO / for loop with an ORDERED clause
•  The ORDERED directive provides a way to "fine tune" where ordering is

to be applied within a loop. Otherwise, it is not required.
•  An ORDERED directive can only appear in the dynamic extent of the

following directives:
•  DO or PARALLEL DO (Fortran)
•  for or parallel for (C/C++)

•  Only one thread is allowed in an ordered section at any time
•  It is illegal to branch into or out of an ORDERED block.
•  An iteration of a loop must not execute the same ORDERED directive

more than once, and it must not execute more than one ORDERED
directive.

•  A loop that contains an ORDERED directive must be a loop with an
ORDERED clause.

54

ORDERED Directive Syntax

Fortran !$OMP DO ORDERED [clauses...]
 (loop region)
!$OMP ORDERED
 (block)
!$OMP END ORDERED
 (end of loop region)
!$OMP END DO

C/C++ #pragma omp for ordered [clauses...]
 (loop region)
#pragma omp ordered newline
 structured_block
 (endo of loop region)

55

ORDERED Example - C
#include <stdio.h>
#include <omp.h>

static float a[1000], b[1000], c[1000];

void test(int first, int last)
{
 int i;
 #pragma omp for schedule(static) ordered
 for (i = first; i <= last; ++i) {
 // Do something here.
 if (i % 2)
 {
 #pragma omp ordered
 printf("test() iteration %d\n", i);
 }
 }
}

void test2(int iter)
{
 #pragma omp ordered
 printf("test2() iteration %d\n", iter);
}

int main()
{
 int i;
 #pragma omp parallel
 {
 test(1, 8);
 #pragma omp for ordered
 for (i = 0 ; i < 5 ; i++)
 test2(i);
 }
}

56

Data Scope Attribute Clauses
•  Also called data sharing attribute clauses
•  Because OpenMP is based upon the shared memory programming

model, most variables are shared by default.
•  Global variables include:

•  Fortran: COMMON blocks, SAVE variables, MODULE variables
•  C: File scope variables, static

•  Private variables include:
•  Loop index variables
•  Stack variables in subroutines called from parallel regions
•  Fortran: Automatic variables within a statement block

•  Clauses used to explicitly define how variables should be scoped
include:

•  PRIVATE
•  FIRSTPRIVATE
•  LASTPRIVATE
•  SHARED
•  DEFAULT
•  REDUCTION
•  COPYIN

57

Data Scope Attribute Clauses (2)
•  Used in conjunction with several directives (PARALLEL,

DO/for, and SECTIONS) to control the scoping of
enclosed variables.

•  Provide the ability to control the data environment during
execution of parallel constructs
•  Define how and which data variables in the serial section of the

program are transferred to the parallel sections of the program
(and back)

•  Define which variables will be visible to all threads in the parallel
sections and which variables will be privately allocated to all
threads

•  Effective only within their lexical/static extent

58

PRIVATE and SHARED Clauses

•  PRIVATE Clause
•  Declares variables in its list to be private to each thread
•  A new object of the same type is declared once for each thread in

the team.
•  All references to the original object are replaced with references to

the new object.
•  Variables declared PRIVATE should be assumed to be uninitialized

for each thread.
•  SHARED Clause

•  Declares variables in its list to be shared among all threads in the
team

•  A shared variable exists in only one memory location and all threads
can read or write to that address

•  It is the programmer's responsibility to ensure that multiple threads
properly access SHARED variables (such as via CRITICAL
sections)

59

FIRSTPRIVATE and LASTPRIVATE Clauses
•  FIRSTPRIVATE Clause

•  Combines the behavior of the PRIVATE clause with automatic
initialization of the variables in its list

•  Listed variables are initialized according to the value of their
original objects prior to entry into the parallel or work-sharing
construct.

•  LASTPRIVATE Clause
•  Combines the behavior of the PRIVATE clause with a copy from

the last loop iteration or section to the original variable object
•  The value copied back into the original variable object is

obtained from the last (sequentially) iteration or section of the
enclosing construct.

•  For example, the team member that executes the final iteration
for a DO section, or the team member that executes the last
SECTION of a SECTIONS context, performs the copy with its
own values.

60

PRIVATE Variables Example
main()
{
 int A = 10;
 int B, C;
 int n = 20;
 #pragma omp parallel
 {
 #pragma omp for private(i) firstprivate(A) lastprivate(B)
 for (int i=0; i<n; i++)
 {

 B = A + i; /* A undefined unless declared firstprivate */

 }
 C = B; /* B undefined unless declared lastprivate */
 } /* end of parallel region */
}

61

DEFAULT Clause
•  Allows the user to specify a default scope for all

variables in the lexical extent of any parallel region
•  Specific variables can be exempted from the default

using the PRIVATE, SHARED, FIRSTPRIVATE,
LASTPRIVATE, and REDUCTION clauses.

•  The C/C++ OpenMP specification does not include
private or firstprivate as a possible default. However,
actual implementations may provide this option.

•  Using NONE as a default requires that the programmer
explicitly scope all variables.

62

Fortran DEFAULT (PRIVATE | FIRSTPRIVATE | SHARED | NONE)

C/C++ default (shared | none)

REDUCTION Clause
•  Performs a reduction on the variables that appear in its

list.
•  A private copy for each list variable is created for each

thread. At the end of the reduction, the reduction
operator is applied to all private copies of the shared
variable, and the final result is written to the global
shared variable.

•  Syntax:

63

Fortran REDUCTION (operator | intrinsic: list)

C/C++ reduction (operator: list)

REDUCTION Clause Example - Fortran
 PROGRAM DOT_PRODUCT
 INTEGER N, CHUNKSIZE, CHUNK, I
 PARAMETER (N=100)
 PARAMETER (CHUNKSIZE=10)
 REAL A(N), B(N), RESULT
! Some initializations
 DO I = 1, N
 A(I) = I * 1.0
 B(I) = I * 2.0
 ENDDO
 RESULT= 0.0
 CHUNK = CHUNKSIZE
!$OMP PARALLEL DO
!$OMP& DEFAULT(SHARED) PRIVATE(I)
!$OMP& SCHEDULE(STATIC,CHUNK)
!$OMP& REDUCTION(+:RESULT)
 DO I = 1, N
 RESULT = RESULT + (A(I) * B(I))
 ENDDO
!$OMP END PARALLEL DO NOWAIT
 PRINT *, 'Final Result= ', RESULT
 END

64

REDUCTION Clause Example - C
#include <omp.h>

main () {
int i, n, chunk;
float a[100], b[100], result;
/* Some initializations */
n = 100;
chunk = 10;
result = 0.0;
for (i=0; i < n; i++) {
 a[i] = i * 1.0;
 b[i] = i * 2.0;
}
#pragma omp parallel for default(shared) private(i) \
 schedule(static,chunk) reduction(+:result)
 for (i=0; i < n; i++)
 result = result + (a[i] * b[i]);
printf("Final result= %f\n",result);
}

65

THREADPRIVATE Directive
•  Used to make global file scope variables (C/C++) or common blocks

(Fortran) local and persistent to a thread through the execution of multiple
parallel regions

•  Must appear after the declaration of listed variables/common blocks
•  Each thread then gets its own copy of the variable/common block, so data

written by one thread is not visible to other threads.
•  On first entry to a parallel region, data in THREADPRIVATE variables and

common blocks should be assumed undefined, unless a COPYIN clause is
specified in the PARALLEL directive

•  THREADPRIVATE variables differ from PRIVATE variables because they
are able to persist between different parallel sections of a code.

•  Data in THREADPRIVATE objects is guaranteed to persist only if the
dynamic threads mechanism is "turned off" and the number of threads in
different parallel regions remains constant. The default setting of dynamic
threads is undefined.

66

Fortran !$OMP THREADPRIVATE (/cb/, ...)

C/C++ #pragma omp threadprivate (list)

THREADPRIVATE Example - Fortran
 PROGRAM THREADPRIV
 INTEGER A, B, I, TID, OMP_GET_THREAD_NUM
 REAL*4 X
 COMMON /C1/ A
!$OMP THREADPRIVATE(/C1/, X)
C Explicitly turn off dynamic threads
 CALL OMP_SET_DYNAMIC(.FALSE.)
 PRINT *, '1st Parallel Region:'
!$OMP PARALLEL PRIVATE(B, TID)
 TID = OMP_GET_THREAD_NUM()
 A = TID
 B = TID
 X = 1.1 * TID + 1.0
 PRINT *, 'Thread',TID,': A,B,X=',A,B,X
!$OMP END PARALLEL
 PRINT *, '************************************'
 PRINT *, 'Master thread doing serial work here'
 PRINT *, '************************************'
 PRINT *, '2nd Parallel Region: '
!$OMP PARALLEL PRIVATE(TID)
 TID = OMP_GET_THREAD_NUM()
 PRINT *, 'Thread',TID,': A,B,X=',A,B,X
!$OMP END PARALLEL
 END 67

THREADPRIVATE Example - C
#include <omp.h>
int a, b, i, tid;
float x;
#pragma omp threadprivate(a, x)
main () {
/* Explicitly turn off dynamic threads */
 omp_set_dynamic(0);
 printf("1st Parallel Region:\n");
 #pragma omp parallel private(b,tid)
 {
 tid = omp_get_thread_num();
 a = tid;
 b = tid;
 x = 1.1 * tid +1.0;
 printf("Thread %d: a,b,x= %d %d %f\n",tid,a,b,x);
 } /* end of parallel region */
 printf("************************************\n");
 printf("Master thread doing serial work here\n");
 printf("************************************\n");
 printf("2nd Parallel Region:\n");
 #pragma omp parallel private(tid)
 {
 tid = omp_get_thread_num();
 printf("Thread %d: a,b,x= %d %d %f\n",tid,a,b,x);
 } /* end of parallel section */
}

68

COPYIN Clause
•  Provides a means for assigning the same value to

THREADPRIVATE variables for all threads in the team
•  List contains the names of variables to copy. In Fortran,

the list can contain both the names of common blocks
and named variables.

•  The master thread variable is used as the copy source.
The team threads are initialized with its value upon entry
into the parallel construct.

69

Fortran COPYIN (list)

C/C++ copyin (list)

Run-time Library Routines

•  The OpenMP standard defines an API for library calls
that perform a variety of functions:
•  Query the number of threads/processors, set number of threads

to use
•  General purpose locking routines (semaphores)
•  Portable wall clock timing routines
•  Set execution environment functions: nested parallelism,

dynamic adjustment of threads.
•  For C/C++, it may be necessary to specify the include file

"omp.h”.
Note: Your implementation may or may not support nested

parallelism and/or dynamic threads. If nested parallelism is
supported, it is often only nominal, in that a nested parallel
region may only have one thread.

70

OMP_SET_NUM_THREADS()

•  Sets the number of threads that will be used in the next
parallel region

•  Must be a positive integer
•  Can only be called from serial portion of the code
•  Has precedence over the OMP_NUM_THREADS

environment variable

71

Fortran SUBROUTINE OMP_SET_NUM_THREADS(scalar_integer_expression)

C/C++ #include <omp.h>
void omp_set_num_threads(int num_threads)

OMP_GET_NUM_THREADS() and
OMP_GET_THREAD_NUM()
•  OMP_GET_NUM_THREADS()

•  Returns the number of threads that are currently in the team
executing the parallel region from which it is called

•  OMP_GET_THREAD_NUM()
•  Returns the thread number of the thread, within the team, making

this call. This number will be between 0 and
OMP_GET_NUM_THREADS-1. The master thread of the team is
thread 0.

•  If called from a nested parallel region, or a serial region, this
function will return 0.

72

Fortran INTEGER FUNCTION OMP_GET_NUM_THREADS()

C/C++ #include <omp.h>
int omp_get_num_threads(void)

OMP_GET_MAX_THREADS()

•  Returns the maximum value that can be returned by a
call to the OMP_GET_NUM_THREADS function

•  Generally reflects the number of threads as set by the
OMP_NUM_THREADS environment variable or the
OMP_SET_NUM_THREADS() library routine.

•  May be called from both serial and parallel regions of
code

73

OMP_GET_THREAD_LIMIT() and
OMP_GET_NUM_PROCS()
•  OMP_GET_THREAD_LIMIT()

•  New with OpenMP 3.0
•  Returns the maximum number of OpenMP threads available to a

program

•  OMP_GET_NUM_PROCS()
•  Returns the number of processors that are available to the

program

74

OMP_IN_PARALLEL()

•  May be called to determine if the section of code
currently executing is parallel or not

•  For Fortran, this function returns .TRUE. if it is called
from the dynamic extent of a region executing in parallel,
and .FALSE. otherwise. For C/C++, it will return a non-
zero integer if parallel, and zero otherwise.

75

Fortran LOGICAL FUNCTION OMP_IN_PARALLEL()

C/C++ #include <omp.h> int omp_in_parallel(void)

OMP_SET_DYNAMIC()
•  Enables or disables dynamic adjustment (by the run time system) of

the number of threads available for execution of parallel regions
•  For Fortran, if called with .TRUE. then the number of threads

available for subsequent parallel regions can be adjusted
automatically by the run-time environment. If called with .FALSE.,
dynamic adjustment is disabled.

•  For C/C++, if dynamic_threads evaluates to non-zero, then the
mechanism is enabled, otherwise it is disabled.

•  The OMP_SET_DYNAMIC subroutine has precedence over the
OMP_DYNAMIC environment variable.

•  The default setting is implementation dependent.
•  Must be called from a serial section of the program

76

Fortran SUBROUTINE OMP_SET_DYNAMIC(scalar_logical_expression)

C/C++ #include <omp.h>
void omp_set_dynamic(int dynamic_threads)

OMP_GET_DYNAMIC()

•  Used to determine if dynamic thread adjustment is
enabled or not

•  For Fortran, this function returns .TRUE. if dynamic
thread adjustment is enabled, and .FALSE. otherwise.

•  For C/C++, non-zero will be returned if dynamic thread
adjustment is enabled, and zero otherwise.

77

Fortran LOGICAL FUNCTION OMP_GET_DYNAMIC()

C/C++ #include <omp.h>
int omp_get_dynamic(void)

OMP_SET_NESTED()
•  Used to enable or disable nested parallelism
•  For Fortran, calling this function with .FALSE. will disable

nested parallelism, and calling with .TRUE. will enable it.
•  For C/C++, if nested evaluates to non-zero, nested

parallelism is enabled; otherwise it is disabled.
•  The default is for nested parallelism to be disabled.
•  This call has precedence over the OMP_NESTED

environment variable.

78

Fortran SUBROUTINE OMP_SET_NESTED(scalar_logical_expression)

C/C++ #include <omp.h> void omp_set_nested(int nested)

OMP_GET_NESTED()

•  Used to determine if nested parallelism is enabled or not
•  For Fortran, this function returns .TRUE. if nested

parallelism is enabled, and .FALSE. otherwise.
•  For C/C++, non-zero will be returned if nested

parallelism is enabled, and zero otherwise.

79

Fortran LOGICAL FUNCTION OMP_GET_NESTED

C/C++ Include <omp.h>
Int omp_get_nested(void)

Locking Routines
•  OMP_INIT_LOCK()

•  Initializes a lock associated with the lock variable
•  The initial state is unlocked.
•  For Fortran, var must be an integer large enough to hold an

address, such as INTEGER*8 on 64-bit systems.

•  OMP_DESTROY_LOCK()
•  Disassociates the given lock variable from any locks

80

Fortran SUBROUTINE OMP_INIT_LOCK(var)

C/C++ #include <omp.h>
 void omp_init_lock(omp_lock_t *lock)

Fortran SUBROUTINE OMP_DESTROY_LOCK(var)

C/C++ #include <omp.h>
 void omp_destroy_lock(omp_lock_t *lock)

Locking Routines (2)
•  OMP_SET_LOCK()

•  Forces the executing thread to wait until the specified lock is
available

•  OMP_UNSET_LOCK()
•  Releases the lock from the executing thread

•  OMP_TEST_LOCK()
•  Attempts to set a lock, but does not block if the lock is

unavailable

81

Fortran SUBROUTINE OMP_SET_LOCK(var)

C/C++ #include <omp.h>
 void omp_set_lock(omp_lock_t *lock)

OMP_GET_WTIME()
•  Provides a portable wall clock timing routine
•  Returns a double-precision floating point value equal to

the number of elapsed seconds since some point in the
past

•  Usually used in pairs with the value of the first call
subtracted from the value of the second call to obtain the
elapsed time for a block of code

•  Designed to be per thread times, and therefore may not
be globally consistent across all threads in a team

82

Fortran DOUBLE PRECISION FUNCTION OMP_GET_WTIME()

C/C++ #include <omp.h>
double omp_get_wtime(void)

OpenMP Environment Variables
•  OMP_SCHEDULE

•  Applies only to DO, PARALLEL DO (Fortran) and for, parallel for
(C/C++) directives which have their schedule clause set to
RUNTIME. The value of this variable determines how iterations
of the loop are scheduled on processors.

•  For example:
 setenv OMP_SCHEDULE "guided, 4"

 setenv OMP_SCHEDULE "dynamic"
•  OMP_NUM_THREADS

•  Sets the number of threads to use during execution
•  For example:

 setenv OMP_NUM_THREADS 8

83

OpenMP Environment Variables (2)
•  OMP_DYNAMIC

•  Enables or disables dynamic adjustment of the number of
threads available for execution of parallel regions

•  Valid values are TRUE or FALSE.
•  For example:
 setenv OMP_DYNAMIC TRUE

•  OMP_NESTED
•  Enables or disables nested parallelism
•  Valid values are TRUE or FALSE.
•  For example:
 setenv OMP_NESTED TRUE

84

Thread Stack Size
•  The OpenMP standard does not specify how much stack

space a thread should have. Consequently, implementations
will differ in the default thread stack size.

•  Default thread stack size can be easy to exhaust. It can also
be non-portable between compilers.

•  Threads that exceed their stack allocation may or may not seg
fault. An application may continue to run while data is being
corrupted.

•  Statically linked codes may be subject to further stack
restrictions.

•  A user's login shell may also restrict stack size.
•  May need to increase thread stack size. How to do this is

system-dependent.

85

Performance Expectations

•  One might expect to get an N times speedup when running a
program parallelized using OpenMP on an N processor/core
platform. However, this is seldom the case due to the
following reasons:
•  A large portion of the program may not be parallelized by OpenMP,

which means that the theoretical upper limit of speedup is limited
according to Amdahl's law.

•  N processors in a SMP may have N times the computation power,
but the memory bandwidth usually does not scale up N times. Quite
often, the original memory path is shared by multiple processors
and performance degradation may be observed when they compete
for the shared memory bandwidth.

•  Many other common problems affecting the final speedup in parallel
computing also apply to OpenMP, such as load balancing and
synchronization overhead.

86

