
CPS 5401 Intro to Computational Science Name _____________________________
Fall 2012 Shirley Moore, Instructor
C Exercises
Due September 25, 2012
	
Turn	 in	 a	 gzipped	 tar	 file	 named	 <your	 name>-‐c-‐lab.tar.gz	 that	 contains	 your	
program	 source	 code	 and	 any	 input	 or	 output	 files	 for	 your	 solutions	 to	 the	
problems	 below	 by	 emailing	 the	 file	 to	 the	 instructor.	 	 You	 may	 turn	 in	 your	 answers	
to	 the	 questions	 below	 either	 electronically	 (included	 in	 your	 tar	 file)	 or	 on	 paper.	
Your	 tar	 file	 should	 unpack	 into	 a	 directory	 named	 <your	 name>-‐c-‐lab	 with	
subdirectories	 for	 the	 different	 problems.	 	 Do	 not	 include	 object	 or	 executable	 files	
in	 your	 tar	 file.	 	 The	 instructor	 should	 be	 able	 to	 build	 your	 programs	 by	 using	 the	
gcc	 command	 for	 a	 single	 file	 or	 your	 makefile	 for	 a	 solution	 that	 uses	 multiple	 files.	
	
1. Write a C program containing a function that returns the standard deviation from the
mean of an array of real values input from the user. Note that if the mean of a sequence of
values (xi, i = 1, n) is denoted by m then the standard deviation, s, is defined as:

You may make use of additional functions if you wish.

To demonstrate correctness compute the standard deviation of the following numbers (10
of them):
5.0 3.0 17.0 -7.56 78.1 99.99 0.8 11.7 33.8 29.6

and also of the following 14,
1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0
14.0

and redirect your output for both of the above to a file.

2. Code profiling and registers. In this problem, we will use some basic code profiling
to examine the effects of explicitly declaring variables as registers. Please turn in the
version of the code that runs the fastest. Consider the fibonacci sequence generating
function fibonacci() in prob2.c which can be downloaded from the course website). The
main() function handles the code profiling, calling fibonacci() many times and measuring
the average processor time.

(a) First, to get a baseline (without any explicitly declared registers), compile and run
prob2.c. Code profiling is one of the rare cases where using a debugger like gdb is
discouraged, because the debugger’s overhead can impact the execution time. Also,
we want to turn off compiler optimization. Please use the following commands to
compile and run the program:
$ gcc -O0 -Wall prob2.c -o prob2
$./prob2

How long does a single iteration take to execute (on average)?

(b) Now, modify the fibonacci() function by making the variables a, b, and c register
variables. Recompile and run the code. How long does a single iteration take now, on
average?

(c) Modify the fibonacci() function one more time by making the variable n also a
register variable. Recompile and run the code once more. How long does a single
iteration take with all four variables as register variables?

(d) Comment on your observed results. What can you conclude about using registers
in your code?

3. Rewrite the fibonacci() function from problem 2 to use the loop constructs below.
Make sure that your code is equivalent to the original function and will work for all
possible positive values of NMAX.
 (a) Use a while loop. Turn in your solution as prob3a.c
 (b) Use a do…while loop. Turn in your solution as prob3b.c.

4. Write a C program that will use a (pseudo) random number generator to fill an array
with 1000 unsigned integers between the values of 0 and the maximum possible value.
Sort the array using the qsort() standard C library function. Then go into a loop that asks
the user to enter a non-negative integer for which to search, uses the bsearch() standard C
library function to perform the search, and outputs either the position in the array where
the integer was found or “not found” if the integer is not in the array. The program
should exit if the user enters a negative integer.

5. Finish the program to solve the linear Diophantine equation
 ax + by = c, a and b non-negative integers
that was discussed in Practical Programming in C, Lecture 3. Your solution should
consist of a header file euclid.h, a file euclid.c containing the gcd() and extended_gcd()
functions, and a file diophant.c containing your main program. Your main program
should input a, b, and c from the command line, check for correct input, and output either
“No solution” if no solution exists or the solution. For example:

 $./diophant 4 6 8
 Solution is x=-4, y=4

Create a makefile for your program that will rebuild it correctly as needed.

