
CS	5334/4390		Spring	2017	
Shirley	Moore,	Instructor	
Lab	3			Due	Thursday,	May	4	
	

Optimization	and	Parallelization	of	a	Molecular	Dynamics	Application	
	

In	this	lab,	we	will	learn	how	to	optimize	and	parallelize	an	application	for	multicore	and	
manycore	architectures.		The	source	code	provided	is	an	N-body	simulation,	which	is	a	
simulation	of	many	particles	that	gravitationally	or	electrostatically	interact.			
	
The	program	keeps	track	of	the	position	and	velocity	of	each	particle	in	the	structure	"Particle".	
The	simulation	is	discretized	into	timesteps.	In	each	timestep,	first,	the	force	on	each	particle	
is	calculated	using	a	direct	all-to-all	algorithm	(O(n^2)	complexity).	Next,	the	velocity	of	each	
particle	is	modified	using	the	explicit	Euler	method.	Finally,	the	positions	of	the	particles	are	
updated	using	the	explicit	Euler	method.	
	
N-body	simulations	are	used	in	astrophysics	to	model	galaxy	evolution,	colliding	galaxies,	
dark	matter	distribution	in	the	Universe,	and	planetary	systems.	They	are	also	used	in	
simulations	of	molecular	structures.	Real	astrophysical	N-body	simulations,	targeted	to	systems	
with	billions	of	particles,	use	simplifications	to	reduce	the	complexity	of	the	method	to		
O(n	log	n).	However,	our	toy	model	is	the	basis	upon	which	the	more	complex	models	are	built	
and	is	illustrative	of	the	optimization	and	parallelization	methods	used	for	real	applications.	
	
In	this	lab,	you	will	mostly	be	modifying	the	function	MoveParticles().	
	
0.	Study	the	code,	then	compile	and	run	the	serial	application	on	the	CPU	and	on	KNL	to	get	the	
			baseline	performance	numbers.	Use	the	provided	Makefile	to	compile	the	serial	application.			
			Read	the	optimization	report	that	is	generated	by	the	compiler.	
	
1.	Apply	strength	reduction	to	the	calculation	of	force	(the	j-loop).	
			Limit	the	use	of	expensive	operations.	Also	make	sure	to	control	the	precision	of	constants	
			and	functions.	Compile	and	run	the	application	to	see	if	you	get	a	performance	improvement.	
	
2.	Parallelize	MoveParticles()	by	using	OpenMP.	Choose	which	loop	is	best	to	parallelize.	Also	
				modify	the	print	statement	which	is	hardwired	to	print	"1	thread"	to	print	the	actual	number	
				of	threads	used.	Compile	and	run	the	application	to	see	if	you	get	a	performance	
				improvement.	Implement	other	necessary	optimizations	to	get	good	vectorization	of	the	
				inner	loop.	Compile	and	run	the	application	to	see	if	you	get	a	performance	improvement.	
	
3.		In	the	current	implementation	the	particle	data	are	stored	in	an	Array	of	Structures(AoS),	
				namely	a	structure	of	"ParticleTypes"s.	Although	this	is	great	for	readability	and	abstraction,	
				it	is	sub-optimal	for	performance	because	the	coordinates	of	consecutive	
				particles	are	not	adjacent.	Thus,	when	the	positions	and	the	velocities	are	accessed	in	
				the	vectorized	loop,	the	data	have	non-unit	stride	access,	which	hampers	performance.					



			Therefore,	it	is	often	beneficial	to	instead	implement	a	Structure	of	Arrays	(SoA)	in	which	a	
			single	structure	holds	coordinate	arrays.	
	
			Implement	SoA	by	replacing	"ParticleType"	with	"ParticleSet".	Particle	set	should	have	six	
			arrays	of	size	n,	one	for	each	dimension	in	the	coordinates	(x,	y,	z)	and	velocities	(vx,	
			vy,		vz).	The	ith	element	of	each	array	is	the	coordinate	position	or	velocity	of	the	ith		particle.			
			Be	sure	to	also	modify	the	initialization	in	main(),	and	modify	the	access	to	the	arrays	in	
			"MoveParticles()".		Compile	and	run	to	see	if	you	get	a	performance	improvement.	
	
4.		In	the	current	version	of	the	code,	the	vectorized	inner	j-loop	iterates	through	all	particles	
for	each	ith	particle,	which	has	inefficient	cache	usage	for	large	n.	To	fix	this,	we	can	use	tiling	
to	increase	cache	reuse.	Although	the	loop	can	be	tiled	in	i	or	j	(if	we	allow	loop	swap),	it	is	
more	beneficial	to	tile	and	vectorize	in	i	for	the	following	reason.	If	we	have	j	as	the	inner-
most	loop,	each	iteration	requires	three	reduction	of	Fx,	Fy,	and	Fz,	which	is	costly	as	it	is	not	
vectorizable.	On	the	other	hand,	if	we	vectorize	in	i,	reduction	is	not	required.	Note	however	
that	you	will	need	to	create	three	buffers	of	tile	length	where	you	can	store	Fx,	Fy,	and	Fz	for	
the	ith	particle.	

	
				Implement	tiling	in	i.	Then	compile	and	run	to	see	if	you	get	a	performance	improvement.	
	
5.	Use	MPI	to	further	parallelize	the	application	across	multiple	nodes.	To	make	this	work	
doable	in	a	short	amount	of	time,	keep	the	entire	data	set	on	each	process.	Each	MPI	process	
should	execute	only	its	portion	of	the	loop	in	the	MoveParticle()	function.	Try	to	minimize	the	
amount	of	communication	between	nodes.	You	may	find	the	MPI	function	MPI_Allgather()	
useful.	Compile	and	run	the	code	to	see	if	you	get	a	performance	improvement.	

	
You	should	turn	in	a	separate	version	of	your	code	for	each	step	of	the	optimization	process,	
along	with	a	report	describing	and	explaining	the	optimization	technique	applied	and	the	
resulting	performance	improvement	for	each	step.	
	
	
	
	


