CPS 5401 Fall 2015 Name
Lab 2
Due Thursday, October 15

Python as Glue for Numerical Fortran or C/C++ Routines

For this lab, you will implement three numerical methods for finding real roots of a
real-valued function in either Fortran or C/C++ and generate a Python extension
module called findroot so that your methods can be called from Python as
functions. You should implement the bisection method, secant method , and
Newton’s method. Your implementations should use double precision real
arithmetic.

Your functions should be callable from Python as shown below.

bisect(f, a, b, etol, m)
secant(f, a, b, etol, m)
newton(f, fp, x, etol, m)

where f is the function for which the root is to be found, a and b are the left and right
endpoints of the search interval for the bisection method and and the first two
interations for the secant method, fp is the derivative of f function and x is in initial
guess at the root for Newton’s method, e is the error tolerance for the result, and m
is the maximum number of steps to be done. The root-finding function should
output the progress at each step in the following format:

n r f(r) error

where n is the step number, r is the current estimate of the root, f(r) is the value of f
atr, and e is the current error estimate. You are required to implement the error
estimate only for the bisection method. For the other methods, it suffices to output
justn, r, f(r).

You should implement basic error checking in your functions, for example checking
if the arguments to bisect do meet the requirement that f(a)f(b) < 0, or if underflow
occurs at some point in your computations.

You should construct a set of test cases to thoroughly test your root-finding
functions and put your test cases in a Python script called runtests.py.

Note that one of your arguments will be a function that the user can define within
Python before calling the root-finding function. This means that the root-finding
function will need to do a callback to the Python function. See
https://sysbio.ioc.ee/projects/f2py2e/usersguide/index.html#call-back-arguments
for information about how to implement a callback argument.




You may already be familiar with the three root-finding methods. If not, you can find
information by following the link at https://en.wikipedia.org/wiki/Category:Root-
finding algorithms, from other Internet resources, or from a numerical methods
textbook such as Numerical Mathematics and Computing by Ward Cheney and David
Kincaid (http://www.amazon.com/Numerical-Mathematics-Computing-Ward-
Cheney/dp/1133103715).

You should turn in your Fortran or C/C++ files, any other necessary source code
files, such as interface definitions, a Makefile that will build the Python extension
module, a README file that explains how to build and use your module, your
runtests.py script. You should make sure that your module will build and import
correctly and that your test cases work correctly using one of the Python
installations on cslinux (Python3 or PythonZ2.6), since we will test on cslinux for
purposes of grading.



